首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
Numerical analysis was developed to calculate the steering properties of a rigid suspension tracked vehicle turning on soft terrain. The developed numerical analysis is based on a method to solve a set of non-linear equations. To verify the numerical analysis, an experiment on a model-tracked vehicle turning with a steering ratio of 1.6 on a loose sandy terrain was carried out. The comparison between measured and calculated values shows that the numerical analysis can predict sinkage, slip ratios and turning radius within an error amount of 15%.  相似文献   

2.
A theoretical analysis of steerability of tracked vehicles   总被引:1,自引:0,他引:1  
This paper presents a theoretical analysis of steerability of tracked vehicles during uniform turning on level pavement.

Considering all possible factors related to steering problems such as track slippage, centrifugal force and vehicle configuration, equations for uniform turning motion have been developed in order to analyze and predict steering dynamics, and steerability in plane motion of vehicles.

These equations have been numerically solved by a digital computer in terms of turning radius, side slip angle, shift of instantaneous center of vehicle and track slippage.  相似文献   


3.
In this research, using a 4-wheel-driven, 4-wheel-steered tractor, two experiments and a computer simulation about its turning on paved ground are described. One experiment is on the relation between the wheel turning angle and the steering angle, and the other is a turning experiment to determine the path traced by the vehicle and to check the simulation. The computer simulation with equations of motion was conducted, and some effects, for example of the running speed, on the yaw angular velocity and on the side slip angle of the center of gravity of the tested tractor were analysed.  相似文献   

4.
A practical method of reducing the resistance of a tracked vehicle to turning or steering motion is discussed. The torque of the sprocket shaft for driving the crawler was measured and used to evaluate how the resistance varied compared with the existing method to turning. There are two ways of reducing the turning resistance by decreasing the contact area of track; one is to decrease the width of the braked track and the other is to shorten its contact length during turning or steering motion. The former is practically impossible to control, but the latter is comparatively easy to do, even under that condition. Applying this mechanism, the resistant force (evaluated by measuring the driving torque of the sprocket shaft) could be reduced about 20% when the contact length of the braked track was shortened to form a small pivot area at its center. It was also reduced more than 50% when the contact length of both tracks was shortened to a pivot during turning motion.  相似文献   

5.
Turning characteristics of multi-axle vehicles   总被引:3,自引:0,他引:3  
This paper presents a mathematical model for multi-axle vehicles operating on level ground. Considering possible factors related to turning motion such as vehicle configuration and tire slip velocities, equations of motion were constructed to predict steerability and driving efficiency of such vehicles. Turning radius, slip angle at the mass center, and each wheel velocity were obtained by numerically solving the equations with steering angles and average wheel velocity as numerical inputs. To elucidate the turning characteristics of multi-axle vehicles, the effect of fundamental parameters such as vehicle speed, steering angles and type of driving system were examined for a sample of multi-axle vehicles. Additionally, field tests using full-scale vehicles were carried out to evaluate the basic turning characteristics on level ground.  相似文献   

6.
For the steady-state circular turning of a 4WD–4WS (4 wheel driven–4 wheel steered) tractor in a rice field, a numerical simulation was achieved. Equations of motion of this tractor were developed in a vehicle fixed x–y coordinate system. By comparing the calculated and measured results of acting forces on the tractor tires, this simulation was evaluated. Then, the characteristic parameters of the turning vehicle, which are the side slip angle and the yaw angular velocity of the vehicle center of gravity, were simulated in several combinations of the steering wheel angle and the forward speed. Also the same simulation applied to a 4WD–2WS tractor which had the same body as the 4WD–4WS tractor. The simulated results showed a clear difference of turnability between 4WS and 2WS. ©  相似文献   

7.
Measuring method and measured results of vertical, longitudinal and lateral forces, which act on tires of a four-wheel drive and four-wheel steering (4WD-4WS) agricultural tractor, are presented in this paper as well as those of longitudinal and lateral slip of the tires. These results were measured during steady-state circular turning, in which a fixed steering wheel angle and a constant running speed were kept, on a paved road. The measurement was also done for a four-wheel drive and two-wheel steering (4WD-2WS) state, disconnecting a rear steering link and fixing the steering angles of the rear tires of the 4WD-4WS tractor to zero. Through the analysis of the results, some turning characteristics of the 4WD-4WS tractor were obtained. A tight corner braking phenomenon was clearly found in the case of 2WS. The 4WS system supplied more efficient turning than the 2WS system. Results obtained from the computer simulation agreed well with the experimental results except in the case of a low speed turn and as to thrusts of tires.  相似文献   

8.
Track forces for outer and inner tracks have been calculated for a military tracked vehicle in a skid-steer situation. The present work is an attempt to improve the understanding of track force variation with turning radius. Furthermore, a reasonable estimate of transmission loads is required for the design of steering transmission for turning a tracked vehicle. This may also be obtained from the track forces. The understanding of track force variation with turning radius has been rather poor. In literature, the reason for lower track force at larger turning radius has been explained in terms of the deflection of the various suspension components like the track shoes, bushings, etc., which are associated with steer action. Deflection of the suspension components does not seem to be an adequate explanation for the variation of track forces with turning radius. In the present work, track forces have been obtained from the dynamics of the moving vehicle. The variation of tractive coefficient (coefficient of friction) due to lateral track slippage has also been considered. This is where the present work differs from the conventional track force estimation where a constant value of coefficient of lateral friction has been used. The estimation of tractive coefficient is made by using pull-slip equation found in literature. The explanation of decreasing track force with increasing radius is given in terms of variation of slip with speed and turning radius. It is found from the study that the concept of variation of coefficient of friction (tractive coefficient) is very important and probably a realistic one in the prediction of track forces. The results of the calculations compare reasonably well with the trends of test result plots obtained in the literature.  相似文献   

9.
This paper describes a test-bed vehicle for studying the integration of the steering system of a wheeled vehicle with the drive system. The vehicle was produced in order to determine whether such an integrated system is practical; to investigate tractive performance compared to other steering-drive systems; and to determine under which conditions such a system has better performance. The integrated steering-drive system of the test-bed vehicle uses a computer to co-ordinate the independently driven wheel speeds of the drive system (which is also the primary steering system) with the steer angles of the non-driven steerable wheels to produce a beneficial secondary steering effect. The secondary steering system assists the primary steering system when side forces act on the vehicle, while producing minimal conflict. This concept can be applied to agricultural vehicles such as tractors, harvesters, mowers, sprayers and self-propelled windrowers. The test-bed vehicle is able to be configured for the following steering-drive systems types: open differential drive with steerable wheels, independent drive wheels with castors, locked differential drive with steerable wheels and a computer integrated steering-drive system. The capacity of the test-bed vehicle to be configured as described is a significant advantage when measuring tractive performance, as the results obtained will be more valid due to the vehicle parameters being the same.  相似文献   

10.
A skid steering model with track pad flexibility   总被引:5,自引:0,他引:5  
The paper describes a model for predicting the skid-steering performance of tracked vehicles that allows for the flexibility of the track pads. It thus accounts for the reductions in friction moment that are observed as the radius of the turn is increased. The pad model computes a compound slip function and takes account of the shear stiffness of the pad and the limiting friction between the pad and the ground. Vehicle dimensions and the equations of motion are entered into a Microsoft Excel spreadsheet. The equations are solved using the Excel Solver routine. This avoids the need for specialised software or programming skills. It also gives good insight into the mechanics of steering and the factors affecting performance. Predicted sprocket torques for a Jaguar vehicle turning at different radii show good agreement with experimental measurements. The steering performance of an example six axle 24 tonne vehicle is computed and compared with that using the early Merritt/Steeds model that ignored track pad flexibility. The flexible pad model generally shows the vehicle to be slightly oversteer, whereas the Merritt/Steeds model predicts the vehicle to be understeer. At higher speeds the maximum cornering acceleration is likely to be limited by available power at the sprockets. Altering the static weight distribution of the vehicle shows that a forward weight distribution tends to cause a more oversteer response with reduced limiting lateral acceleration. With a rearward weight distribution, the vehicle response tends towards neutral to slight understeer. This is in contrast to Ackerman steered wheeled vehicles with pneumatic tyres where moving the CG forward tends to a more understeer response. Using the concept of static margin as applied to wheeled vehicles, it is suggested that a uniform or slightly forward weight distribution would make tracked vehicles less sensitive to external disturbances (cambered roads for example).  相似文献   

11.
To improve the trafficability and the turnability of the terrain vehicles, it was already pointed out in a previous report that the control of the ground contact area of the running gear such as tracks and wheels could be highly recommended. The contact area of the running gear must be as large as possible to obtain more traction, however, less contact area would be better to obtain easier turning and steering. In this paper the principle of improving the turnability for the terrain vehicle was theoretically discussed. One of the examples of the practical application of the theory developed here was proposed and applied to the terrain vehicle equipped with eight powered wheels, which was constructed as a test vehicle for this study.  相似文献   

12.
The paper presents an instrumented vehicle that was equipped with measuring systems to perform complete dynamics tests, especially in off-road conditions. The equipment consists of four wheel dynamometers, a steering robot, and a differential GPS system together with an inertial platform, a non-contact vehicle speed sensor, and an on-board computer with software to control the devices and collect experimental data. The four wheel dynamometers measure six elements; based on strain gage force transducers, it measures three orthogonal forces and three moments. The steering robot can control the steering wheel of the vehicle at a variety of excitation modes; it can carry out typical vehicle dynamics tests (ISO 7401, ISO 4138, ISO/TR3888, etc.) as well as custom engineered tests at a wide range of setting parameters (steer angle rate up to 1600 deg/s). The differential GPS system gives true time vehicle kinematics data (velocities, accelerations, angles, etc.) at 10-ns sample rate and 20-mm accuracy. The base vehicle, a Suzuki Vitara 4 × 4, required no special modifications or changes to install the measuring equipment. The paper also describes typical tests performed with the use of the instrumented vehicle together with sample results.  相似文献   

13.
This paper deals with the design and implementation of a double wishbone front suspension for a vineyard–orchard tractor, developed in conjunction with a major tractor brand.To date, independent front suspensions are only found on commercial tractors over 150 kW. A front suspended axle is recognized as a popular option in improving tractor ride performance on larger vehicles. Despite their narrow track, vineyard–orchard tractors are required to have good lateral stability and stability on slopes (i.e. at least 28° rollover angle) and an extremely tight turning diameter for a 4WD vehicle (less than 7 m).The discussion is concered with retrofitting an existing vehicle with a double wishbone front suspension.This paper focuses on the layout and kinematic analysis phases of the design process. These were conducted in collaboration with the vehicle manufacturer to demonstrate suspension feasibility in terms of available space and correct kinematic layout.The final kinematic turning diameter obtained is about 6.4 m, with a ±65 mm suspension travel available. The roll centre height value is not very sensitive to steering (about −95 mm excursion in the Z axis from no-steer position to full steer).  相似文献   

14.
为了提高重型车辆在转向过程中的稳定性和安全性,本文提出了一种基于滑模变结构控制的主动前轮转向控制策略,基于这种策略设计了主动转向控制器,建立了三轴商用车的二自由度车辆动力学简化模型及整车模型,利用TruckSim--Simulink建立联合仿真平台以及进行硬件在环实验。在不同工况、不同车速下,分别对有无主动转向控制器的车辆进行了操纵稳定性分析,并在此基础上进行了滑模变结构控制的主动转向影响因素敏感性分析。实验结果表明,这种控制器策略在不同工况下具有较强的适应性。  相似文献   

15.
针对城市环境中GNSS因遮挡导致MEMS-SINS精度快速降低的问题,在车辆运动学约束的基础上,结合四通道ABS轮速传感器和方向盘转角信息,提出一种新的适用于陆地车辆的MEMS-SINS导航方法。该方法通过分析车辆转弯和运动约束特性,构建角速度和加速度观测量,从而实现基于模型辅助的MEMS误差在线补偿;其次,ABS轮速信息与非完整约束条件结合可额外增加三维车体速度观测量,进一步维持卫星失效时组合滤波器的量测更新。跑车实验表明,在GNSS信号频繁丢失甚至长时间无法定位时,低精度MEMS惯性器件引起的快速误差积累得到有效抑制,与经典车体约束结合里程计算法相比,航向精度提高约70%,位置、速度精度也有相应的提高,验证了算法的有效性。  相似文献   

16.
The equation of motion is derived for the turning in a horizontal plane of a tractor with articulated frame steering when the tractor has no tractive force. Different from a standard tractor, the articulated tractor varies the position of its center of gravity according to the turning angle, so that the motion equation becomes very complex and difficult to solve. Side slip of the articulated tractor is obtained by the numerical analysis method, i.e. the Runge-Kutta-Gill method. Turning radii and ruts of tires are calculated for a running speed and a bending angle, and they are compared with experimental results.  相似文献   

17.
Nowadays, safety of road vehicles is an important issue due to the increasing road vehicle accidents. Passive safety system of the passenger vehicle is to minimize the damage to the driver and passenger of a road vehicle during an accident. Whereas an active steering system is to improve the response of the vehicle to the driver inputs even in adverse situations and thus avoid accidents. This paper presents a neural network-based robust control system design for the active steering system. Primarily, double-pinion steering system used modeling of the active steering system. Then four control structures are used to control prescribed random trajectories of the active steering system. These control structures are as classical PID Controller, Model-Based Neural Network Controller, Neural Network Predictive Controller and Robust Neural Network Predictive Control System. The results of the simulation showed that the proposed neural network-based robust control system had superior performance in adapting to large random disturbances.  相似文献   

18.
Design of lightweight robots for over-snow mobility   总被引:1,自引:0,他引:1  
Snowfields are challenging terrain for lightweight (<50 kg) ground robots. Deep sinkage, high snow-compaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform terrain that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates moist, compactable snow.A small robot will invariably encounter deep snow relative to its ground clearance and thus must travel over the snow rather than gain support from the underlying surface. This can be accomplished using low-pressure tracks (<1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow.This paper presents guidance to design lightweight robots for good mobility over snow based on tests of two custom-designed over-snow robots, SnoBot and SnoBot-2, and driving experience with two commercially available robots, PackBot and Talon. Moreover, we used the present guidance to design SnoBot-2, and it displays excellent over-snow mobility. Because many other considerations constrain robot designs, this guidance can also help with development of winterization kits to improve the over-snow performance of existing robots.  相似文献   

19.
The multi-axle drive provides for maximum traction of the vehicle. However, this mode of driving, apart from the complicated design of the driving mechanism, is connected with major problems due to the so-called kinematic discrepancy encountered by a vehicle under operation. In certain conditions, the kinematic discrepancy results in the phenomenon of so-called circulating power which causes, first of all, additional loading on the drive system, then increased energy loss and tyre wear and, in the case of an articulated frame-steer vehicle, the substantial growth of steering resistance.The paper reviews some examples of results of the studies on wheel slips, load on the drive system, and on the 4-wheel-drive articulated frame-steer vehicle's steering gear. The author also discusses a new concept for determining kinematic discrepancy. The suggested equations, when applying the present mathematical models which express the dependence of a tyre's slip rate on longitudinal forces, permit to solve the statically undeterminable problem concerning the distribution of the wheel's longitudinal forces in any multi-axle vehicle.  相似文献   

20.
方培俊  蔡英凤  陈龙  孙晓强  王海 《力学学报》2022,54(7):1896-1908
车辆动力学建模过程中通常会进行简化和假设, 导致模型在某些工况下无法准确反映车辆的实际动态特性, 影响控制精度甚至安全性. 鉴于此, 该文提出了一种基于数据驱动的非线性建模与控制方法, 建立了新型神经网络车辆横向动力学多步预测模型, 实现了智能汽车对参考轨迹的跟踪控制. 首先, 在分析车辆单轨模型并考虑轮胎非线性和纵向负载转移的基础上, 基于编码器?解码器结构设计神经网络横向动力学模型. 其中, 使用串行排列来扩展微分方程描述不完全的动力学信息, 隐藏层神经元学习车辆的高度非线性和强耦合特性, 进而提高模型全局计算精度. 利用所构建的数据集进行模型训练和测试, 结果表明, 相比于物理模型, 所提出的模型在不同路面附着系数条件下均具有更高的建模精度, 具有隐式预测路面摩擦条件能力. 其次, 利用提出的模型设计轨迹跟踪控制算法, 根据车辆稳态转向假设, 计算所需的前轮转向角和稳态质心侧偏角, 将稳态质心侧偏角纳入基于路径误差的转向反馈中, 实现参考轨迹跟踪控制. 最后, 使用CarSim/Simulink联合仿真及HIL实验测试进行不同工况试验的对比分析, 对所提出的基于神经网络模型的控制算法进行评价, 结果表明, 该模型能够实现智能汽车在高速下精确的跟踪控制效果, 并具有良好的横向稳定性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号