首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examine the different ways a set ofn points in the plane can be connected to form a simple polygon. Such a connection is called apolygonization of the points. For some point sets the number of polygonizations is exponential in the number of points. For this reason we restrict our attention to star-shaped polygons whose kernels have nonempty interiors; these are callednondegenerate star-shaped polygons.We develop an algorithm and data structure for determining the nondegenerate star-shaped polygonizations of a set ofn points in the plane. We do this by first constructing an arrangement of line segments from the point set. The regions in the arrangement correspond to the kernels of the nondegenerate star-shaped polygons whose vertices are the originaln points. To obtain the data structure representing this arrangement, we show how to modify data structures for arrangements of lines in the plane. This data structure can be computed inO(n 4) time and space. By visiting the regions in this data structure in a carefully chosen order, we can compute the polygon associated with each region inO(n) time, yielding a total computation time ofO(n 5) to compute a complete list ofO(n 4) nondegenerate star-shaped polygonizations of the set ofn points.  相似文献   

3.
Applications of random sampling in computational geometry,II   总被引:10,自引:0,他引:10  
We use random sampling for several new geometric algorithms. The algorithms are Las Vegas, and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divide-and-conquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requiresO(A+n logn) expected time, whereA is the number of intersecting pairs reported. The algorithm requiresO(n) space in the worst case. Another algorithm computes the convex hull ofn points inE d inO(n logn) expected time ford=3, andO(n [d/2]) expected time ford>3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set ofn points inE 3 inO(n logn) expected time, and on the way computes the intersection ofn unit balls inE 3. We show thatO(n logA) expected time suffices to compute the convex hull ofn points inE 3, whereA is the number of input points on the surface of the hull. Algorithms for halfspace range reporting are also given. In addition, we give asymptotically tight bounds for (k)-sets, which are certain halfspace partitions of point sets, and give a simple proof of Lee's bounds for high-order Voronoi diagrams.  相似文献   

4.
The dynamic planar point location problem is the task of maintaining a dynamic set S of n nonintersecting (except possibly at endpoints) line segments in the plane under the following operations:
• Locate (: point): Report the segment immediately above , i.e., the first segment intersected by an upward vertical ray starting at ;
• Insert (: segment): Add segment to the collection of segments;
• Delete (: segment): Remove segment from the collection of segments.
We present a solution which requires space O(n) and has query and insertion time O(log n log log n) and deletion time O(log2n). The bounds for insertions and deletions are amortized. A query time below O(log2n) was previously only known for monotone subdivisions and subdivisions consisting of horizontal segments and required nonlinear space.  相似文献   

5.
Ray Shooting Amidst Convex Polygons in 2D   总被引:1,自引:0,他引:1  
We consider the problem of ray shooting in a two-dimensional scene consisting ofmconvex polygons with a total ofnedges. We present a data structure that requiresO(mn log m) space and preprocessing time and that answers a ray shooting query inO(log2 m log2 n) time. If the polygons are pairwise disjoint, the space and preprocessing time can be improved toO((m2+n)log m) andO((m2+n log n)log m), respectively. Our algorithm also works for a collection of disjoint simple polygons. We also show that if we allow onlyO(n) space, a ray shooting query among a collection of disjoint simple polygons can be answered in timeO(m/[formula]1+ log2 n) time, for any >0.  相似文献   

6.
We give two optimal parallel algorithms for constructing the arrangement ofn lines in the plane. The first nethod is quite simple and runs inO(log2 n) time usingO(n 2) work, and the second method, which is more sophisticated, runs inO(logn) time usingO(n 2) work. This second result solves a well-known open problem in parallel computational geometry, and involves the use of a new algorithmic technique, the construction of an -pseudocutting. Our results immediately imply that the arrangement ofn hyperplanes in d inO(logn) time usingO(n d) work, for fixedd, can be optimally constructed. Our algorithms are for the CREW PRAM.This research was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.  相似文献   

7.
LetX be a given set ofn circular and straight line segments in the plane where two segments may interest only at their endpoints. We introduce a new technique that computes the Voronoi diagram ofX inO(n logn) time. This result improves on several previous algorithms for special cases of the problem. The new algorithm is relatively simple, an important factor for the numerous practical applications of the Voronoi diagram.This work was supported by NSF Grants No. DCR-84-01898 and No. DCR-84-01633.  相似文献   

8.
In this paper, sequential and parallel algorithms are presented to find a maximum independent set with largest weight in a weighted permutation graph. The sequential algorithm, which is designed based on dynamic programming, runs in timeO(nlogn) and requiresO(n) space. The parallel algorithm runs inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM.  相似文献   

9.
In this paper, parallel algorithms are presented for solving some problems on permutation graphs. The coloring problem is solved inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM. The weighted clique problem, the weighted independent set problem, the cliques cover problem, and the maximal layers problem are all solved with the same complexities. We can also show that the longest common subsequence problem belongs to the class NC.  相似文献   

10.
In physical VLSI design, network design (wiring) is the most time-consuming phase. For solving global wiring problems, we propose to first compute from the layout geometry a graph that preserves all shortest paths between pairs of relevant points, and then to operate on that graph for computing shortest paths, Steiner minimal tree approximations, or the like. For a set of points and a set of simple orthogonal polygons as obstacles in the plane, withn input points (polygon corner or other) altogether, we show how a shortest paths preserving graph of sizeO(n logn) can be computed in timeO(n logn) in the worst case, with spaceO(n). We illustrate the merits of this approach with a simple example: If the length of a longest edge in the graph is bounded by a polynomial inn, an assumption that is clearly fulfilled for graphs derived from VLSI layout geometries, then a shortest path can be computed in timeO(n logn log logn) in the worst case; this result improves on the known best one ofO(n(logn)3/2).  相似文献   

11.
We consider the problem of representing the visibility graph of line segments as a union of cliques and bipartite cliques. Given a graphG, a familyG={G 1,G 2,...,G k } is called aclique cover ofG if (i) eachG i is a clique or a bipartite clique, and (ii) the union ofG i isG. The size of the clique coverG is defined as ∑ i=1 k n i , wheren i is the number of vertices inG i . Our main result is that there are visibility graphs ofn nonintersecting line segments in the plane whose smallest clique cover has size Ω(n 2/log2 n). An upper bound ofO(n 2/logn) on the clique cover follows from a well-known result in extremal graph theory. On the other hand, we show that the visibility graph of a simple polygon always admits a clique cover of sizeO(nlog3 n), and that there are simple polygons whose visibility graphs require a clique cover of size Ω(n logn). The work by the first author was supported by National Science Foundation Grant CCR-91-06514. The work by the second author was supported by a USA-Israeli BSF grant. The work by the third author was supported by National Science Foundation Grant CCR-92-11541.  相似文献   

12.
In thecollect problem(M. Saks, N. Shavit, and H. Woll,in“Proceedings of the 2nd ACM–SIAM Symposium on Discrete Algorithms, 1991),nprocessors in a shared-memory system must each learn the values ofnregisters. We give a randomized algorithm that solves the collect problem inO(n log3 n) total read and write operations with high probability, even if timing is under the control of a content-oblivious adversary (a slight weakening of the usual adaptive adversary). This improves on both the trivial upper bound ofO(n2) steps and the best previously known bound ofO(n3/2 log n) steps, and is close to the lower bound of Ω(n log n) steps. Furthermore, we show how this algorithm can be used to obtain a multiuse cooperative collect protocol that isO(log3 n)-competitive in the latency model of Ajtaiet al.(“Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science,” 1994); andO(n1/2 log3/2 n)-competitive in the throughput model of Aspnes and Waarts (“Proceedings of the 28th ACM Symposium on Theory of Computing,” 1996). In both cases the competitive ratios are within a polylogarithmic factor of optimal.  相似文献   

13.
We prove a theorem on partitioning point sets inE d (d fixed) and give an efficient construction of partition trees based on it. This yields a simplex range searching structure with linear space,O(n logn) deterministic preprocessing time, andO(n 1?1/d (logn) O(1)) query time. WithO(nlogn) preprocessing time, where δ is an arbitrary positive constant, a more complicated data structure yields query timeO(n 1?1/d (log logn) O(1)). This attains the lower bounds due to Chazelle [C1] up to polylogarithmic factors, improving and simplifying previous results of Chazelleet al. [CSW]. The partition result implies that, forr dn 1?δ, a (1/r)-approximation of sizeO(r d) with respect to simplices for ann-point set inE d can be computed inO(n logr) deterministic time. A (1/r)-cutting of sizeO(r d) for a collection ofn hyperplanes inE d can be computed inO(n logr) deterministic time, provided thatrn 1/(2d?1).  相似文献   

14.
We introduce the notion ofsearchability as a property of an in place merging algorithm. We show that a pair of sorted arrays can be merged in place in linear time, so that a search can be performed in logarithmic time at any point during the merging process. We apply this method to devise an implicit data structure which can support searches inO(log2 n) time in the worst case, andO(logn) on the average, and insertions inO(logn) time, in the worst case.This research was partly supported by NSERC under grant A8237 and presented in preliminary form at the 10th International Colloquium on Automata, Languages and Programming.On leave from the University of Chile.  相似文献   

15.
We present an algorithm that determines the link center of a simplen-vertex polygonP inO(n logn) time. The link center of a simple polygon is the set of pointsx insideP at which the maximal link-distance fromx to any other point inP is minimized. The link distance between two pointsx andy insideP is defined to be the smallest number of straight edges in a polygonal path insideP connectingx andy. Using our algorithm we also obtain anO(n logn)-time solution to the problem of determining the link radius ofP. The link radius ofP is the maximum link distance from a point in the link center to any vertex ofP. Both results are improvements over theO(n 2) bounds previously established for these problems. The research of J.-R. Sack was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

16.
In this paper we present an algorithm to compute the rectilinear geodesic voronoi neighbor of an arbitrary query pointqamong a setSofmpoints in the presence of a set ofnvertical line segment obstacles inside a rectangular floor. The distance between a pair of points α and β is the shortest rectilinear distance avoiding the obstacles in and is denoted by δ(α, β). The rectilinear geodesic voronoi neighbor of an arbitrary query pointq,RGVN(q) is the pointpiSsuch that δ(q, pi) is minimum. The algorithm suggests a preprocessing of the elements of the setsSand inO((m + n)log(m + n)) time such that for an arbitrary query pointq, theRGVNquery can be answered inO(log(m + n)) time. The space required for storing the preprocessed information isO(n + m log m). If the points inSare placed on the boundary of the rectangular floor, a different technique is adopted to decrease the space complexity toO(m + n). This technique works even if the obstacles are rectangles instead of line segments. Finally, the parallelization of the preprocessing steps for the latter algorithm is suggested, which takesO(log3(m + n)) time, usingO((m + n)1.5/log2(m + n)) processors andO(log(m + n)) query time.  相似文献   

17.
Given a planar point setS, a triangulation ofS is a maximal set of non-intersecting line segments connecting the points. The minimum weight triangulation problem is to find a triangulation ofS such that the sum of the lengths of the line segments in it is the smallest. No polynomial time algorithm is known to produce the optimal or even a constant approximation of the optimal solution, and it is also unknown whether the problem is NP-hard. In this paper, we propose two improved heuristics, which triangulate a set ofn points in a plane inO(n 3) time and never do worse than the minimum spanning tree triangulation algorithm given by Lingas and the greedy spanning tree triangulation algorithm given by Heath and Pemmaraju. These two algorithms both produce an optimal triangulation if the points are the vertices of a convex polygon, and also do the same in some special cases.  相似文献   

18.
Efficient parallel algorithms are presented, on the CREW PRAM model, for generating a succinct encoding of all pairs shortest path information in a directed planar graphG with real-valued edge costs but no negative cycles. We assume that a planar embedding ofG is given, together with a set ofq faces that cover all the vertices. Then our algorithm runs inO(log2 n) time and employsO(nq+M(q)) processors (whereM(t) is the number of processors required to multiply twot×t matrices inO(logt) time). Let us note here that wheneverq<n then our processor bound is better than the best previous one (M(n)).O(log2 n) time,n-processor algorithms are presented for various subproblems, including that of generating all pairs shortest path information in a directedouterplanar graph. Our work is based on the fundamental hammock-decomposition technique of G. Frederickson. We achieve this decomposition inO(logn log*n) parallel time by usingO(n) processors. The hammock-decomposition seems to be a fundamental operation that may help in improving efficiency of many parallel (and sequential) graph algorithms.This work was partially supported by the EEC ESPRIT Basic Research Action No. 3075 (ALCOM) and by the Ministry of Industry, Energy and Technology of Greece.  相似文献   

19.
Given a fixed setS ofn points inE 3 and a query plane, the halfspace range search problem asks for the retrieval of all points ofS on a chosen side of. We prove that withO(n(logn)8 (loglogn)4) storage it is possible to solve this problem inO(k+logn) time, wherek is the number of points to be reported. This result rests crucially on a new combinatorial derivation. We show that the total number ofj-sets (j=1, ...,k) realized by a set ofn points inE 3 isO(nk 5); ak-set is any subset ofS of sizek which can be separated from the rest ofS by a plane.Supported in part by NSF grants MCS 83-03925 and the Office of Naval Research and the Defense Advanced Research Projects Agency under contract N00014-83-K-0146 and ARPA Order No. 4786.Supported in part by Joint Services Electronics Program under Contract N00014-79-C-0424.  相似文献   

20.
A dynamic data structure is given that maintains the minimal distance in a set ofn points ink-dimensional space inO((logn) k log logn) amortized time per update. The size of the data structure is bounded byO(n(logn) k ). Distances are measured in the MinkowskiL t -metric, where 1 t . This is the first dynamic data structure that maintains the minimal distance in polylogarithmic time for fully on-line updates.This work was supported by the ESPRIT II Basic Research Actions Program, under Contract No. 3075 (project ALCOM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号