首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to examine the physicochemical properties of three overlapping peptides belonging to the E2 envelope protein of Hepatitis G virus (GBV-C/HGV) and its interaction with phospholipid biomembrane models using biophysical techniques. We describe our findings concerning the surface activity and the interaction of the peptides with monolayers and liposomes composed of the zwitterionic phospholipids dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine (DMPC) and a mixture of DMPC with the anionic phospholipid dimyristoylphosphatidylglycerol. The results inform about the effect of the chain length on their interaction with biomembrane models. The longest chain peptide interacts in a higher extent with all the phospholipid studied as a result of a combination of hydrophobic and electrostatic forces.  相似文献   

2.
The interaction of diclofenac sodium (SD) with soya phosphatidylcholine (SPC) has been studied with floating Langmuir monolayers and liposomes. SD was either introduced into the subphase of SPC monolayers or co-spread with SPC on an aqueous subphase. In both cases, SD caused the surface pressure isotherm to become more expanded, thus demonstrating the affinity between SD and SPC. The incorporation of SD caused SPC liposomes to have a decreased diameter according to light scattering experiments. When SPC liposomes were injected into an aqueous subphase, their destruction yielding surface-active monomers could be monitored by changes in surface pressure. SD-loaded liposomes displayed a much faster kinetics when the surface density of surface-active monomers was plotted against time, with rate constants increasing significantly with the SD concentration. The kinetic profile can be quantitatively analyzed by plotting ln[1 - (gamma/gamma infinity)] versus t1/2.  相似文献   

3.
The synthesis, physicochemical characterization, and interaction with membrane model systems of a peptide derived from the PA22-2 region of laminin are described. Surface activity studies indicate that this peptide is able to spread at the air-water interface being the maximal spreading pressure 20 mN/m at subphase concentrations around 10 micro M. Besides, these peptide molecules are also able to form stable monolayers. Physicochemical studies concerning the interaction of this peptide with lipids, organized in mono and bilayers, were carried out using Langmuir balance experiments and polarization fluorescence techniques. The peptide penetrates better in monolayers of DPPC than in those of PC and forms condensed mixed monolayers with DPPC. Energies of mixing are small thus indicating that deviations from ideality were almost negligible. Interactions with bilayers were studied through microviscosity changes (DPH and TMA-DPH probes), membrane permeability alterations (CF, NBD-PE/dithionite), and fusion promotion (NBD-PE/Rh-PE, resonance energy transfer). Results indicate that this sequence interacts very softly with bilayers without promoting changes in their organization. These data as well as the lack of interaction with erythrocytes suggest that coating liposomes with this peptide through chemical amide bonds can render stable inmunoliposomes for further biological applications.  相似文献   

4.
《Supramolecular Science》1997,4(3-4):449-453
Four peptide analogues related to the active sequence YIGSR of laminin have been synthesised. The synthesis and chemical characterisation of the peptides are described. Physicochemical properties of these peptides such as surface activity, spreadability, monolayer formation, as well as their interaction with lipid monolayers and bilayers, have been studied by using Langmuir-Blodgett films and liposomes as membrane models. In spite of their good water solubility, these peptides are able to form stable monolayers at the air/water interface and to insert into lipid monolayers. The interaction with bilayers is soft; they are not able to induce the leakage of entrapped CF nor to modify the microviscosity of bilayers in general. Thus in these models electrostatic forces apparently do not play an important role, as we expected previously according to the electrical charge of bilayers, markers and peptides.  相似文献   

5.
 The surface activity of HAV-VP3(110–121) peptide was studied at different concentrations in an aqueous solution. Saturation was reached at 0.62 μM concentration. The ability of the peptide to insert into monolayers of CL, SA, DPPC, DPPC/5% CL and DPPC/5% SA was also performed. Mixed mono-layers composed of this peptide and the lipid mixtures were also studied as far as the miscibility of the two components is concerned. The mixed monolayers showing small negative deviations from ideality. The values of excess free energy of mixing (ΔG E M) suggest that the energy associated to the miscibility process is almost non-significant except for a 0.2 molar fraction of DPPC/SA and 0.6 molar fraction of DPPC/CL. The peptide has an expanding effect upon the monolayers but due to its amphoteric character this interaction is not dependent on the electrical charge of the lipids. In fluorescence studies, the peptide showed some degree of interaction with the lipid polar heads, but no interactions were detected with its alkylchains. This results show that after incubation with DPPC/5% CL and DPPC/5% SA liposomes the peptide remains in the outer part of the bilayers. Received: 20 January 1997 Accepted: 28 May 1997  相似文献   

6.
To prepare liposomes containing a synthetic hepatitis A virus antigen (HAV) [VP3(110-121)] as a vaccine, the miscibility of this peptide (with negative net charge) with a neutral lipid [dipalmitoylphosphatidylcholine (DPPC)], a negatively charged lipid [dipalmitoylphosphatidylglycerol (DPPG)], and a positively charged lipid [Stearylamine (SA)] was studied through compression isotherms of monolayers. Mixtures with DPPC and SA showed a low degree of interaction with the peptide, the composition of the monolayer being stable through compression. For DPPG-containing monolayers larger positive deviations from ideality were found, and the peptide was squeezed out from the monolayer at a DPPG/VP3(110-121) mole fraction of 0.8/0.2. All this suggests that besides hydrophobic interactions between the peptide and the lipid, electrostatic forces also play a role; thus it seems that neutral and positively charged lipids would be more suitable for preparing stable liposomes with VP3(110-121). Copyright 2000 Academic Press.  相似文献   

7.
Thrombospondin-1 (TSP-1) is a protein involved in angiogenesis and tumor metastasis. In a previous study, a tridecapeptide sequence of TSP-1B [KRFKQDGGWSHWG] was synthesized and its biological activity was determined as well as the activity of three related sequences TSPB-(E), TSPB-(S), and TSPB-(Abu)(6). These peptides were tested for activity on the cell growth of three human carcinoma cells lines and only TSPB-(Abu)(6) increased proliferation of MCF7 and HT-29. The main aim of this study was to perform physicochemical measurements, in a comparative way, to determine if the differences in activity could be related to physicochemical properties. Peptides were characterised by HPLC capacity factors, UV, fluorescence, and CD spectra (either in buffer solution or in the presence of lipid vesicles), surface activity, and aggregation. Moreover, the interaction of these peptides with phospholipids was determined through their penetration in monolayers of DPPC, PG, or PS as well as their miscibility in mixed monolayers. Besides, using liposomes as model membranes, the affinity of these peptides for phosphatidylcholine was measured with vesicles labeled with fluorescent markers (TMA-DPH, laurdan, pyrene). Results show that these molecules are highly hydrophilic and their surface activity is low. Mixed monolayers indicate that there is almost no miscibility. Besides, its presence does not modify noticeably the microviscosity of bilayers. Moreover, UV and fluorescence spectra of peptides were not affected by the presence of lipids in the media but CD spectra recorded in TFE/water (1/1) resulted in small changes for TSPB, TSPB-(E), and TSPB-(S) peptides. On the contrary CD spectra of TSPB-(Abu)(6) derivatives were clearly much more sensitive to the polarity of the environment. According to these data the biological activity of peptide with a cyclic aspartimide moiety at position 6 could be related to a specific conformational change in the peptide chain promoted by a hydrophobic membrane-like environment.  相似文献   

8.
Amphiphilic derivative of the laminin peptide YIGSR and three other mutated peptides with mutation at Y with V (valine), I (isoleucine), and L (leucine) have been synthesized. The monolayer formation and the stability of these peptide analogues at air/water interface and the interaction with phospholipid monolayers have been studied using surface pressure-molecular area (pi-A) and surface potential-molecular area (DeltaV-A) isotherms. The single amino acid mutation in the native sequence leads to appreciable changes in surface activity, orientation and insertion into lipid monolayers with LIGSR showing most hydrophobic character while YIGSR showed most polar nature. The morphology of spread monolayers in the most close packed state was carried out using Brewster angle microscopy (BAM). LB films of these amphiphilic peptide derivatives transferred to hydrophilic quartz surfaces and hydrophobically modified surfaces showed significant changes in the work of adhesion as well as spreading behavior of water with the L substituted sequence showing maximum work of adhesion and the native sequence YIGSR, the least work of adhesion. From theoretical estimates, the long-range effects of the different amino acid residues in position 1 on the alkyl chains have been studied from charge on the carbon and hydrogen atoms of the alkyl tails. The present study demonstrates that amphiphilic derivatives of the laminin peptide YIGSR show enhanced activity compared to the original sequence. This work shows that the amino acid substituents on the head group clearly influence the distal methylene groups of the tail. Thus, any mutation of even single amino acid in a peptide sequence influences and plays an important role in determining macroscopic properties such as surface energy and adhesion both at air/solution and solid/solution interfaces.  相似文献   

9.
We studied the interaction of the alpha-helical peptide acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)) with tethered bilayer lipid membranes (tBLM) and lipid monolayers formed at an air-water interface. The interaction of L(24) with tBLM resulted in adsorption of the peptide to the surface of the bilayer, characterized by a binding constant K(c)=2.4+/-0.6 microM(-1). The peptide L(24) an induced decrease of the elasticity modulus of the tBLM in a direction perpendicular to the membrane surface, E(radial). The decrease of E(radial) with increasing peptide concentration can be connected with a disordering effect of the peptide to the tBLM structure. The pure peptide formed a stable monolayer at the air/water interface. The pressure-area isotherms were characterized by a transition of the peptide monolayer, which probably corresponds of the partial intercalation of the alpha-helixes at higher surface pressure. Interaction of the peptide molecules with lipid monolayers resulted in an increase of the mean molecular area of phospholipids both in the gel and liquid crystalline states. With increasing peptide concentration, the temperature of the phase transition of the monolayer shifted toward lower temperatures. The analysis showed that the peptide-lipid monolayer is not an ideally miscible system and that the peptide molecules form aggregates in the monolayer.  相似文献   

10.
The peptide corresponding to the sequence (279-298) of the Hepatitis G virus (HGV/GBV-C) E2 protein was synthesized, and surface activity measurements, pi-A compression isotherms, and penetration of E2(279-298) into phospholipid monolayers spread at the air-water interface were carried out on water and phosphate buffer subphases. The results obtained indicated that the pure E2(279-298) Langmuir monolayer exhibited a looser packing on saline-buffered than on pure water subphase and suggest that the increase in subphase ionic strength stabilizes the peptide monolayer. To better understand the topography of the monolayer, Brewster angle microscopy (BAM) images of pure peptide monolayers were obtained. Penetration of the peptide into the pure lipid monolayers of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) and into mixtures of dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) at various initial surface pressures was investigated to determine the ability of these lipid monolayers to host the peptide. The higher penetration of peptide into phospholipids is attained when the monolayers are in the liquid expanded state, and the greater interaction is observed with DMPC. Furthermore, the penetration of the peptide dissolved in the subphase into these various lipid monolayers was investigated to understand the interactions between the peptide and the lipid at the air-water interface. The results obtained showed that the lipid acyl chain length is an important parameter to be taken into consideration in the study of peptide-lipid interactions.  相似文献   

11.
Mixed monolayers of an acylated derivative of hepatitis A synthetic peptide VP3(110-121) with neutral, cationic or anionic lipids were spread at the air/water interface. Deviations from ideality as well as thermodynamic values were calculated at different surface pressures using the free-excess energy, the interaction parameter and the enthalpy. The miscibility at the collapse point was also checked. Maximum deviations from ideality were found for mixtures containing the anionic lipid phosphatidylglycerol (PG), and it seems that the monolayer composition is not stable through compression, as the peptide is ejected from the film. Films containing neutral [dipalmitoylphosphatidylcholine (DPPC)] or cationic [stearylamine (SA)] lipids showed more regular behaviour. As the peptide has a net negative charge it is probable that electrostatic interactions are in part responsible of the good miscibility of palmitoyl VP3(110-121) with SA. In order to prepare liposomes containing palmitoyl VP3(110–121), lipids such as SA or DPPC/SA will be a more suitable choice than anionic lipids such as PG. Received: 26 May 2000 Accepted: 22 September 2000  相似文献   

12.
13.
The association of neuropeptide Y (NPY) with air-water interfaces and with phospholipid monolayers on water subphases and on physiological buffer has been investigated. Surface pressure (pi) versus molecular area (A) relations of the peptide at water surfaces depend on the concentration of the spreading solutions. Independent of that concentration, they show a transition from a low-density state to a high-density state at pi approximately 12 mN/m. Similar features are observed in the NPY adsorption to preformed monolayers (Deltapi(t --> infinity) as a function of pii = pi (t = 0) where t = 0 signifies the time of peptide injection). The transition is also observed in cospread lipid-NPY monolayers and is interpreted as the exclusion of the peptide from the surface layer. The reproducibility of the isotherms after expansion suggests that cospread lipid-peptide monolayers are thermodynamically stable and that the peptide remains associated with the monolayer after exclusion from the lipid surface. A comparison of NPY association with zwitterionic and with anionic lipids as well as a comparison of the interactions on pure water and on physiological buffer suggest that electrostatic attraction plays a major role in the energetics of peptide binding to the membrane surface. Dual label fluorescence microscopy demonstrates that the peptide associates preferentially with the disordered, liquid condensed monolayer phase and also suggests that it self-aggregates upon exceeding a critical surface concentration. A NPY variant with a distorted alpha-helix interacts with the surface as strongly as the natural NPY but expands the monolayers more. This suggests that the helix motif in the peptide is more important for the interaction with the receptor than for binding of the peptide to the membrane surface. In context, these observations attribute a specific role to the membrane in funneling the signal peptide to its membrane receptor.  相似文献   

14.
We present a method to covalently attach peptide nucleic acid (PNA) to liposomes by conjugation of PNA peptide to charged amino acids and synthetic di-alkyl lipids ("PNA amphiphile," PNAA) followed by co-extrusion with disteroylphosphatidylcholine (DSPC) and cholesterol. Attachment of four Glu residues and two ethylene oxide spacers to the PNAA was required to confer proper hydration for extrusion and presentation for DNA hybridization. The extent of DNA oligomer binding to 10-mer PNAA liposomes was assessed using capillary zone electrophoresis. Nearly all PNAs on the liposome surface are complexed with a stoichiometric amount of complementary DNA 10-mers after 3-h incubation in pH 8.0 Tris buffer. No binding to PNAA liposomes was observed using DNA 10-mers with a single mismatch. Longer DNA showed a greatly attenuated binding efficiency, likely because of electrostatic repulsion between the PNAA liposome double layer and the DNA backbone. Langmuir isotherms of PNAA:DSPC:chol monolayers indicate miscibility of these components at the compositions used for liposome preparation. PNAA liposomes preserve the high sequence-selectivity of PNAs and emerge as a useful sequence tag for highly sensitive bioanalytical devices.  相似文献   

15.
The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).  相似文献   

16.
The interaction of two hybrid peptides of cecropin A and melittin [CA(1-8)M(1-18) and CA(1-7)M(2-9)] with liposomes was studied by differential scanning calorimetry (DSC), circular dichroism (CD), and quasi-elastic light scattering (QELS). The study was carried out with large unilamellar vesicles (LUVs) of three different lipid compositions: 1,2-dimyristoil-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and a binary mixture of DMPC/DMPG, in a wide range of peptide-to-lipid (P:L) molar ratios (0 to 1:7). DSC results indicate that, for both peptides, the interaction depends on membrane composition, with very different behavior for zwitterionic and anionic membranes. CD data show that, although the two peptides have different secondary structures in buffer (random coil for CA(1-7)M(2-9) and predominantly beta-sheet for CA(1-8)M(1-18)), they both adopt an alpha-helical structure in the presence of the membranes. Overall, results are compatible with a model involving a strong electrostatic surface interaction between the peptides and the negatively charged liposomes, which gives place to aggregation in the gel phase and precipitation after a threshold peptide concentration. In the case of zwitterionic membranes, a progressive surface coverage with peptide molecules destabilizes the membrane, eventually leading to membrane disruption. Moreover, delicate modulations in behavior were observed depending on the peptide.  相似文献   

17.
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.  相似文献   

18.
Four hydrophobic laminin-related peptides and their corresponding parent peptides were synthesized to use them to target liposomes to tumoral cells. The peptide sequence was YIGSR((NH(2))), and hydrophobic residues linked to the alpha-amino terminal end were decanoyl, myristoyl, stearoyl, and cholesteryl-succinoyl. Before use in biological systems, a physicochemical study was carried out in order to determine their interaction with DPPC bilayers that could compromise both the toxicity and the stability of liposomal preparations. The experiments were based on DSC, fluorescence polarization, outer-membrane destabilization, and vesicle leakage. These peptides showed in general a low interaction with the vesicles, promoting in all cases the rigidification of bilayers. This lack of strong disturbances in the ordered state of phospholipid molecules seems more likely due to the similarity of peptide acyl chains with those of lipids than to the absence of interactions. The bulkiness of cholesteryl derivative as well as its tendency toward aggregation resulted in weak interaction levels except in thermograms. The binding of peptides to the surface of liposomes loaded with doxorubicin resulted in preparations with good entrapment yields and small size, required for long circulating vesicles (especially for the myristoyl derivative). The alternative method based on the reaction of parent peptide to the surface of liposomes through an amide linkage was slightly more efficient when the peptide was linked to the carboxy-terminal end of the DSPE-PEG-COOH-containing liposomes. Nevertheless, the final decision must be made with the simplicity of the procedure and reduction in losses during all the steps of the processes taken into consideration.  相似文献   

19.
The conformation of peptide and protein drugs in various microenvironments and the interaction with drug carriers such as liposomes are of considerable interest. In this study the influence of microenvironments such as pH, salt concentration, and surface charge on the secondary structure of a model protein, lysozyme, either in solution or entrapped in liposomes with various molar ratios of phosphatidylcholine (PC):cholesterol (Chol) was investigated. It was found that entrapment efficiency was more pronounced in negatively charged liposomes than in non-charged liposomes, which was independent of Chol content and pH of hydration medium. The occurrence of aggregation, decrease in zeta potential, and alteration of 31P NMR chemical shift of negatively charged lysozyme liposomes compared to blank liposomes suggested that the electrostatic interaction plays a major role in protein–lipid binding. Addition of sodium chloride could impair the neutralizing ability of positively charged lysozyme on negatively charged membrane via chloride counterion binding. Neither lysozyme in various buffer solutions with sodium chloride nor that entrapped in liposomes showed any significant change in their secondary structures. However, significant decrease in α-helical content of lysozyme in non-charged liposomes at higher pH and salt concentrations was discovered.  相似文献   

20.
The synthesis of hydrophobic peptide derivatives related to the laminin sequence [YIGSR(NH(2))] is described. Hydrophobicity is achieved by the attachment of decanoic, myristic, or stearic acids to the amino terminal end of the peptide. Moreover, a cholesterol residue was also introduced as succinimidoyl-cholesteryl moiety at the same position. These peptidic compounds are designed to be inserted into lipid bilayers to prepare, what can be considered as, immunoliposomes to target these vesicles to tumor cells. Physicochemical aspects related to their surface activity, insertion into lipid layers, spreadibility, formation of aggregates, and haemolytic activity have been studied as a previous step in the selection of the most convenient derivative. The results obtained indicate that these peptide derivatives show a high tendency to form aggregates in aqueous media, this fact reducing their interaction with lipid mono- and bilayers. The most suitable derivatives for interacting with liposomes are myristoyl and decanoyl. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号