首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2,6-diamino-4-hydroxy-5-formamidopyrimidine of 2'-deoxyguanosine (FaPydG) is one of the major DNA lesions found after oxidative stress in cells. To clarify the base pairing and coding potential of this major DNA lesion with the aim to estimate its mutagenic effect, we prepared oligonucleotides containing a cyclopentane based analogue of the DNA lesion (cFaPydG). In addition, oligonucleotides containing the cyclopentane analogue of 2'-deoxyguanosine (cdG), and oligonucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were synthesized. The thermodynamic stability of duplexes containing these building blocks and all canonical counterbases were determined by concentration dependent melting-point measurements (van't Hoff plots). The data reveal that cFaPydG greatly destabilizes a DNA duplex (DeltaDeltaG degrees (298K) approximately 2-4 kcal mol(-1)). The optimal base pairing partner for the cFaPydG lesion is dC. Investigation of duplexes containing dG and cdG shows that the effect of substituting the deoxyribose by a cyclopentane moiety is marginal. The data also provide strong evidence that the FaPydG lesion is unable to form a base pair with dA. Our computational studies indicate that the syn-conformation required for base pairing with dA is energetically unfavorable. This is in contrast to 8-oxodG for which the syn-conformation represents the energetic minimum. Kinetic primer extension studies using S. cerevisiae Pol eta reveal that cFaPydG is replicated in an error-free fashion. dC is inserted 2-3 orders of magnitude more efficiently than dT or dA, showing that FaPydG is a lesion which retains the coding potential of dG. This is also in contrast to 8-oxodG, for which base pairing with dC and dA was established.  相似文献   

2.
We describe physicochemical properties in DNA of altered-size nucleobases that retain Watson-Crick analogous hydrogen-bonding ability. Size-expanded analogues of adenine and thymine (xA and xT, respectively, which are expanded by benzo-fusion) were incorporated into natural DNA oligonucleotides, and their effects on helix stability were measured. Base stacking studies revealed that the two stretched analogues stack much more strongly than do their naturally sized counterparts. In contrast to this, pairing studies showed that single substitutions of the new bases are destabilizing to the natural helix as compared to A or T in standard A-T pairs in the same context, unless multiple adjacent substitutions are used. Interestingly, the size-expanded bases displayed selective recognition of the hydrogen-bonding complementary partners, suggesting that Watson-Crick analogous pairs were still formed despite local backbone strain. In an attempt to compensate for the added size of the expanded adenine, we tested a formamide deoxynucleoside, which Leonard proposed as a shortened thymine analogue (F(o)). Data showed, however, that this compound adopts a conformation unfavorable for pairing. On the basis of the combined thermodynamic data, we estimate the energetic cost of the 2.4 A stretching of an isolated base pair in DNA at ca. +1 to 2 kcal/mol. Notably, during the pairing studies, the two size-expanded nucleobases were found to display significant changes in fluorescence on formation of stacked versus unstacked structures, suggesting possible applications in probing nucleic acid structures and biochemical mechanisms.  相似文献   

3.
We report the synthesis and DNA incorporation of a novel C-5 thiopropyne-substituted thymidine derivative which can be used to bring about covalent crosslinks between two noncomplementary DNA strands. This modified thymine pairs normally with adenine in duplex DNA and is shown not to be destabilizing to DNA double helices. Placement of the thiol-nucleotide near the center of opposing pyrimidine strands in pyr·pur·pyr triple helices results in crosslinking of the pyrimidine strands under aerobic conditions. Thermal melting studies at neutral pH show that such crosslinked ligands bind complementary purine strands with higher affinity than is possible with simple Watson-Crick recognition alone. In addition, we describe the construction of a triplex-forming circular oligonucleotide which contains a similar disulfide link across the center. This macrobicyclic ligand binds with extremely high affinity and sequence selectivity to a complementary purine DNA strand. The formation of crosslinks across two noncomplementary strands represents a new strategy for increasing affinity and selectivity of DNA recognition.  相似文献   

4.
The interaction of chlorobenzylidine with herring sperm DNA has been investigated by fluorescence, absorption, DNA melting experiment and differential scanning calorimetry (DSC). When bound to DNA, chlorobenzylidine shows hypochromism and red shift in absorption spectra, fluorescence quenching and polarization increasing in fluorescence spectra and increasing in DNA melting temperature. These spectral characteristics strongly support intercalation of chlorobenzylidine into herring sperm DNA. Scatchard plots constructed from fluorescence titration data give a binding constant of 3.2 x 10(4) M(-1) and a binding site size of six base pairs per bound drug molecule. The intercalative interaction is exothermic with a van't Hoff enthalpy of -30.6 kJ mol(-1). This result is obtained from DSC experiment. In addition, DeltaG degrees =-28.5 kJ mol(-1), and DeltaS degrees =-7.1 J mol(-1) K(-1). These results show that the binding of chlorobenzylidine to herring sperm DNA is exothermic.  相似文献   

5.
We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5-9.3 °C in Tm or 1.5-1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1-1 and 2-2 self-pairs and the 1-2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1-1 pair is more stabilizing than a T-A pair. When situated internally, the affinity of the 1-1 pair is the same as, or slightly better than, the analogous T-T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing, and lend new support to the idea that hydrogen bonds in DNA may be more important for specificity of pairing than for affinity. Finally, the study raises the possibility of using these or related base pairs to expand the genetic code beyond the natural A-T and G-C pairs.  相似文献   

6.
The pH effect on adsorbed antibody-binding protein (protein G) orientation on gold (Au) and its adsorption thermodynamic characteristics were investigated using quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). The adsorbed protein G orientation was measured by binding response of two antibody-antigen systems: the model bovine serum albumin (BSA) and the foodborne pathogen E. coli O157:H7. Surface coverage was not significantly affected by pH, but its orientation was. The most properly oriented protein G for antibody binding was achieved at near-neutral pH. Adsorption was verified by XPS measurements using nitrogen (N) 1s, oxygen (O) 1s, and Au 4p peak heights. Adsorption energetics were determined by van't Hoff and Langmuir kinetic analyses of adsorption data obtained at 296, 303, and 308 K. Large characteristic entropy change of protein adsorption was observed (ΔS° = 0.52 ± 0.01 kcal/mol·K). The adsorption process was not classical physisorption but exhibited chemisorption characteristics based on significant enthalpy change (ΔH° = -25 ± 6 kcal/mol).  相似文献   

7.
In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm confirm that this is the most likely site for hydrogen abstraction by hydroxyl radical.  相似文献   

8.
In analysis of the thermodynamics of the transfer of a solute from the mobile phase to the stationary phase in reversed-phase liquid chromatography, it is nearly always assumed that the phase ratio is constant. This type of analysis is typically performed by applying a form of the van't Hoff equation, which relates the retention factor to temperature via the enthalpy and entropy of transfer. When non-linear van't Hoff plots are observed, it is often assumed that the enthalpy and entropy of transfer change with temperature. However, when the possibility of a change in the phase ratio is considered, it becomes apparent that non-linear van't Hoff behavior may or may not be due to changes in enthalpy or entropy. In this work, we present mathematical evidence that phase ratio changes, if they occur, can cause deviations from linearity in a van't Hoff plot. We also show that the phase ratio influence can be eliminated by considering the molecular difference between two solutes instead of the solutes themselves. The resulting selectivity van't Hoff plots may be linear, even when the van't Hoff plots of the two solutes are non-linear. In such cases, temperature-dependent phase ratio changes, and not necessarily changes in the transfer enthalpy, may be responsible for the curved van't Hoff plots of the individual solutes. In addition, we present chromatographic evidence that different solutes may "see" different thermodynamic phase ratios. It is clear that the concept of a phase ratio in reversed-phase chromatography is not nearly as well defined as a phase ratio in a bulk system like a liquid-liquid extraction.  相似文献   

9.
The gas-phase acidities of adenine, 9-ethyladenine, and 3-methyladenine have been investigated for the first time, using computational and experimental methods to provide an understanding of the intrinsic reactivity of adenine. Adenine is found to have two acidic sites, with the N9 site being 19 kcal mol(-1) more acidic than the N10 site; the bracketed acidities are 333 +/- 2 and 352 +/- 4 kcal mol(-1), respectively. Because measurement of the less acidic site can be problematic, we benchmarked the adenine N10 measurement by bracketing the acidity of 9-ethyladenine, which has the N9 site blocked and allows for exclusive measurement of the N10 site. The acidity of 9-ethyladenine brackets to 352 +/- 4 kcal mol(-1), comparable to that of the N10 site of the parent adenine. Calculations and experiments with 3-methyladenine, a harmful mutagenic nucleobase, uncovered the surprising result that the most commonly written tautomer of 3-methyladenine is not the most stable in the gas phase. We have found that the most stable tautomer is the "N10 tautomer" 10, as opposed to the imine tautomer 3. The bracketed acidity of 10 is 347 +/- 4 kcal mol(-1). Since 10 is not a viable species in DNA, 3 is a likely tautomer; calculations indicate that this form has an extremely high acidity (320-323 kcal mol(-1)). The biological implications of these results, particularly with respect to enzymes that cleave alkylated bases from DNA, are discussed.  相似文献   

10.
A nanostructured poly(acylhydrazone), which is reversibly formed in acidic aqueous solution from di(aldehyde) and di(acylhydrazine) monomers with appended hexaglyme groups, was found to display lower critical solution (LCS) behavior. Remarkably, under acidic conditions in which polymerization is reversible, large and reversible molecular weight (M(w)) increases were observed in response to elevated temperatures, both below and above the LCS temperature. No variation in M(w) was evident under neutral and alkaline conditions, in which the acylhydrazone condensation is essentially irreversible. Results of turbidometry studies, size-exclusion chromatography-multiangle laser light scattering (SEC-MALLS), and transmission electron microscopy (TEM) suggest that heating the polymer below the LCS temperature leads to polymer growth with preservation of the characteristic nanostructured morphology, whereas the onset of the microphase separated state causes a fundamental change in morphology, in which the polymer chains aggregate into larger bundles and fibers. van't Hoff analysis of a small molecule model system indicates that the acylhydrazone condensation is enthalpy driven (ΔH(eq) = -8.2 ± 0.2 kcal·mol(-1) and ΔS(eq) = -11.1 ± 0.4 = cal·mol(-1)·K(-1)), which suggests that the observed polymer growth with temperature is not a consequence of the intrinsic thermodynamics of the intermonomer linkage but is likely the result of the thermoresponsive characteristics conferred by the multiple hexaglyme groups. The system described displays double control of the dynamer state by two orthogonal agents, heat and protons (pH). It also represents a prototype for dynamic materials displaying multiple control adaptive behavior.  相似文献   

11.
The energetics of the dehalogenation of adenine-halouracil base pairs (A5XU), upon attachment of low-energy electrons, was investigated by use of density functional theory. These results are compared to those of single halouracils reported previously [J. Phys. Chem. A 2002, 106, 11248-11253]. Using the B3LYP functionals it was found that the gas phase adiabatic electron affinities (EA) of halogenated base pairs (A5BrU 0.59, A5ClU 0.56, A5FU 0.47 eV) are higher than that of AU (0.32 eV) and are slightly higher or comparable to the other DNA abundant base pair, guanine-cytosine (0.49 eV). Base pairing with adenine slightly decreases the EA of the halouracils, in contrast to the substantial increase in EA on base pairing of natural bases; as a result, the probability of electron capture by halouracils when in double-stranded DNA is suggested to be substantially reduced relative to that in single-stranded DNA. Even though the activation barriers for dehalogenation are small for both BrU-A and ClU-A, only the former has negative values of both DeltaH (-0.95 kcal/mol) and DeltaG (-1.52), while the latter has negative DeltaG (-0.28) but positive DeltaH (1.27). Infinite separations into halogen anions plus the remaining A-U-5-yl neutral radical are energetically unfavorable owing to sizable halide ion, radical interactions as reported earlier for non base paired halouracils. It is found that base pairing does not change the reactive nature of the uracil-5-yl radical. The results suggest that the radiosensitization properties of halouracils should be less effective in double-stranded DNA than in single-stranded DNA.  相似文献   

12.
We have investigated the interaction of the intramolecular human telomeric DNA G-quadruplex with a hemicyanine-peptide ligand, by studying the rate of quadruplex opening with a complementary DNA oligonucleotide. By employing a minimal kinetic model, the relationship between the observed rate of quadruplex opening and the ligand concentration has enabled estimation of the dissociation constant. A van't Hoff analysis revealed the enthalpy and entropy changes of binding to be -77 +/- 22 kJ mol(-1) and -163 +/- 75 J mol(-1) K(-1), respectively. Arrhenius analyses of the rate constants of opening free and bound quadruplex gave activation energies of 118 +/- 2 and 98 +/- 10 kJ mol(-1), respectively. These results indicate that the presence of the ligand has only a small effect on the activation energy, suggesting that the unbinding of the ligand occurs after the transition state for quadruplex unfolding.  相似文献   

13.
In the present study the natural orbitals for chemical valence (NOCVs) combined with the energy decomposition scheme (ETS) were used to characterize bonding in various clusters of ammonia borane (borazane): dimer D, trimer TR, tetramer TE, and the crystal based models: nonamer N and tetrakaidecamer TD. ETS-NOCV results have shown that shortening of the B-N bond (by ~0.1 ?) in ammonia borane crystal (as compared to isolated borazane molecule) is related to the enhancement of donation (by 6.5 kcal/mol) and electrostatic (by 11.3 kcal/mol) contributions. This, in turn, is caused solely by the electrostatic dipole-dipole interaction between ammonia borane units; dihydrogen bonding, BH···HN, formed between borazane units exhibits no direct impact on B-N bond contraction. On the other hand, formation of dihydrogen bonding appeared to be very important in the total stabilization of single borazane unit, namely, ETS-based data indicated that it leads to significant electronic stabilization ΔE(orb) = -17.5 kcal/mol, which is only slightly less important than the electrostatic term, ΔE(elstat) = -19.4 kcal/mol. Thus, both factors contribute to relatively high melting point of the borazane crystal. Deformation density contributions (Δρ(i)) obtained from NOCVs allowed to conclude that dihydrogen bonding is primarily based on outflow of electron density from B-H bonding orbitals to the empty σ*(N-H) (charge transfer component). Equally important is the covalent contribution resulting from the shift of the electron density from hydrogen atoms of both NH and BH groups to the interatomic regions of NH···HB. Quantitatively, averaged electronic strength of dihydrogen bond per one BH···HN link varies from 1.95 kcal/mol (for the crystal structure model, N), 2.47 kcal/mol (for trimer TR), through 2.65 kcal/mol (for tetramer TE), up to 3.95 kcal/mol (for dimer D).  相似文献   

14.
A large number of Calpha-H...O contacts are present in transmembrane protein structures, but contribution of such interactions to protein stability is still not well understood. According to previous ab initio quantum calculations, the stabilization energy of a Calpha-H...O contact is about 2-3 kcal/mol. However, experimental studies on two different Calpha-H...O hydrogen bonds present in transmembrane proteins lead to conclusions that one contact is only weakly stabilizing and the other is not even stabilizing. We note that most previous computational studies were on optimized geometries of isolated molecules, but the experimental measurements were on those in the structural context of transmembrane proteins. In the present study, 263 Calpha-H...O=C contacts in alpha-helical transmembrane proteins were extracted from X-ray crystal structures, and interaction energies were calculated with quantum mechanical methods. The average stabilization energy of a Calpha-H...O=C interaction was computed to be 1.4 kcal/mol. About 13% of contacts were stabilizing by more than 3 kcal/mol, and about 11% were destabilizing. Analysis of the relationships between energy and structure revealed four interaction patterns: three types of attractive cases in which additional Calpha-H...O or N-H...O contact is present and a type of repulsive case in which repulsion between two carbonyl oxygen atoms occur. Contribution of Calpha-H...O=C contacts to protein stability is roughly estimated to be greater than 5 kcal/mol per helix pair for about 16% of transmembrane helices but for only 3% of soluble protein helices. The contribution would be larger if Calpha-H...O contacts involving side chain oxygen were also considered.  相似文献   

15.
The existence of DNA adducts bring the danger of carcinogenesis because of mispairing with normal DNA bases. 1,N6-ethenoadenine adducts (epsilonA) and 1,N6-ethanoadenine adducts (EA) have been considered as DNA adducts to study the interaction with thymine, as DNA base. Several different stable conformers for each type of adenine adduct with thymine, [epsilonA(1)-T(I), epsilonA(2)-T(I), epsilonA(3)-T(I) and EA(1)-T(I), EA(2)-T(I), EA(3)-T(I)] and [epsilonA(1)-T(II), epsilonA(2)-T(II), epsilonA(3)-T(II) and EA(1)-T(II), EA(2)-T(II), EA(3)-T(II)], have been considered with regard to their interactions. The differences in their geometrical structures, energetic properties, and hydrogen-bonding strengths have also been compared with Watson-Crick adenine-thymine base pair (A-T). Single-point energy calculations at MP2/6-311++G** levels on B3LYP/6-31+G* optimized geometries have also been carried out to better estimate the hydrogen-bonding strengths. The basis set superposition error corrected hydrogen-bonding strength sequence at MP2/6-311++G**//B3LYP/6-31+G* for the most stable complexes is found to be EA(2)-T(I) (15.30 kcal/mol) > EA(1)-T(II) (14.98 kcal/mol) > EA(3)-T(II) (14.68 kcal/mol) > epsilonA(2)-T(I) (14.54 kcal/mol) > epsilonA(3)-T(II) (14.22 kcal/mol) > epsilonA(3)-T(II) (13.64 kcal/mol) > A-T (13.62 kcal/mol). The calculated reaction enthalpy value for epsilonA(2)-T(I) is 10.05 kcal/mol, which is the highest among the etheno adduct-thymine complexes and about 1.55 kcal/mol more than those obtained for Watson-Crick A-T base pair and the reaction enthalpy value for EA(1)- T(II) is 10.22 kcal/mol, which is highest among the ethano addcut-thymine complexes and about 1.72 kcal/mol more than those obtained for Watson-Crick A-T base pair. The aim of this research is to provide fundamental understanding of adenine adduct and thymine interaction at the molecular level and to aid in future experimental studies toward finding the possible cause of DNA damage.  相似文献   

16.
Benzo[a]pyrene (BP), a prototype polycyclic aromatic hydrocarbon (PAH), can be metabolically activated to the enantiomeric benzo[a]pyrene diol epoxides (BPDEs), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene and the (-)-(7S,8R,9R,10S) enantiomer. These can react with adenine residues in DNA, to produce the stereoisomeric 10S (+)- and 10R (-)-trans-anti-[BP]-N(6)-dA adducts. High-resolution NMR solution studies indicate that in DNA duplexes the 10R (-) adduct is intercalated on the 5'-side of the modified adenine, while the 10S (+) adduct is disordered, exhibits multiple adduct conformations, and is positioned on the 3'-side of the modified adenine. Duplexes containing the 10S (+) adduct positioned at A within codon 61 of the human N-ras sequence CAA are thermodynamically less stable and more easily excised by human DNA repair enzymes than those containing the 10R (-) adduct. However, the molecular origins of these differences are not understood and represent a fascinating opportunity for elucidating structure-function relationships. We have carried out a computational investigation to uncover the structural and thermodynamic origins of these effects in the 11-mer duplex sequence d(CGGACAAGAAG).d(CTTCTTGTCCG) by performing a 2-ns molecular dynamics simulation using NMR solution structures as the basis for the starting models. Then, we applied the MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) method to compute free energy differences between the stereoisomeric adducts. The 10R (-) isomer is more stable by approximately 13 kcal/mol, of which approximately 10 kcal/mol is enthalpic, which agrees quite well with their observed differences in thermodynamic stability. The lower stability of the 10S (+) adduct is due to diminished stacking by the BP moiety in the intercalation pocket, more helix unwinding, and a diminished quality of Watson-Crick base pairing. The latter stems from conformational heterogeneity involving a syn-anti equilibrium of the glycosidic bond in the modified adenine residue. The lower stability and conformational heterogeneity of the 10S (+) adduct may play a role in its enhanced susceptibility to nucleotide excision repair.  相似文献   

17.
18.
The thermodynamics and kinetics for the monofunctional binding of the antitumor drug cisplatin, cis-diamminedichloroplatinum(II), to a purine base site of DNA were studied computationally using guanine and adenine as model reactants. A dominating preference for initial attack at the N7-position of guanine is established experimentally, which is a crucial first step for the formation of a 1,2-intrastrand cross-link of adjacent guanine bases that leads to bending and unwinding of DNA. These structural distortions are proposed ultimately to be responsible for the anticancer activity of cisplatin. Utilizing density functional theory in combination with a continuum solvation model, we developed a concept for the initial Pt-N7 bond formation to atomic detail. In good agreement with experiments that suggested DeltaG++ = approximately 23 kcal/mol for the monofunctional platination of guanine, our model gives DeltaG++ = 24.6 kcal/mol for guanine, whereas 30.2 kcal/mol is computed when adenine is used. This result predicts that guanine is 3-4 orders of magnitude more reactive toward cisplatin than adenine. A detailed energy decomposition and molecular orbital analysis was conducted to explain the different barrier heights. Two effects are equally important to give the preference for guanine over adenine: First, the transition state is characterized by a strong hydrogen bond between the ammine-hydrogen of cisplatin and the O=C6 moiety of guanine in addition to a stronger electrostatic interaction between the two reacting fragments. When adenine binds, only a weak hydrogen bond forms between the chloride ligand of cisplatin and the H(2)N-C6 group of adenine. Second, a significantly stronger molecular orbital interaction is identified for guanine compared to adenine. A detailed MO analysis is presented to provide an intuitive view into the different electronic features governing the character of the Pt-N7 bond in platinated purine bases.  相似文献   

19.
The interaction between pirimicarb and calf thymus DNA in physiological buffer (pH 7.4) was investigated with the use of Neutral Red (NR) dye as a spectral probe by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, as well as viscosity measurements and DNA melting techniques. The results revealed that an intercalation binding should be the interaction mode of pirimicarb to DNA. CD spectra indicated that pirimicarb induced conformational changes of DNA. The binding constants of pirimicarb with DNA were obtained by the fluorescence quenching method. The thermodynamic parameters, enthalpy change (ΔHθ) and entropy change (ΔSθ) were calculated to be -52.13±2.04 kJ mol(-1) and -108.8±6.72 J mol(-1) K(-1) according to the van't Hoff equation, which suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of pirimicarb to DNA. Further, the alternative least squares (ALS) method was applied to resolve a complex two-way array of the absorption spectra data, which provided simultaneously the concentration information for the three reaction components, pirimicarb, NR and DNA-NR. This ALS analysis indicated that the intercalation of pirimicarb into the DNA by substituting for NR in the DNA-NR complex.  相似文献   

20.
To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号