首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformation between the two well-known phases of alkanethiol monolayers on Au(111), c(4×2) and (√3×√3)R30°, has been studied using scanning tunneling microscopy in ultra-high vacuum. Among the many versions of the c(4×2) phases observed, one particular structure where a lateral shift of adsorbate by as much as 0.17 nm within the unit cell is found. This lateral shift along the [112[combining macron]] direction corresponds to the movement of one adsorbed unit, towards its nearest neighbour from one hollow site to another (fcc to hcp, or hcp to fcc).  相似文献   

2.
Exposing a Au{111} surface to NO(2) and then to CO at temperatures around 120 K in ultra-high vacuum gives rise to molecular overlayers in which the two species are co-adsorbed, which we have investigated using low-temperature scanning tunnelling microscopy. Under NO(2)-rich conditions, a (√7 × √7)R19.1° phase with 3:1 NO(2):CO stoichiometry forms. Under CO-rich conditions, this phase co-exists with other phases having 2:1 and 1:1 NO(2):CO stoichiometries and different symmetries, and with bare Au surface. Structural models for these phases are discussed. Individual domains of the (√7 × √7)R19.1° phase are chiral, by virtue of the arrangement of their achiral components, an observation that may have more general implications.  相似文献   

3.
Adsorption and decomposition of cyclohexanone (C(6)H(10)O) on Pt(111) and on two ordered Pt-Sn surface alloys, (2 × 2)-Sn/Pt(111) and (√3 × √3)R30°-Sn/Pt(111), formed by vapor deposition of Sn on the Pt(111) single crystal surface were studied with TPD, HREELS, AES, LEED, and DFT calculations with vibrational analyses. Saturation coverage of C(6)H(10)O was found to be 0.25 ML, independent of the Sn surface concentration. The Pt(111) surface was reactive toward cyclohexanone, with the adsorption in the monolayer being about 70% irreversible. C(6)H(10)O decomposed to yield CO, H(2)O, H(2), and CH(4). Some C-O bond breaking occurred, yielding H(2)O and leaving some carbon on the surface after TPD. HREELS data showed that cyclohexanone decomposition in the monolayer began by 200 K. Intermediates from cyclohexanone decomposition were also relatively unstable on Pt(111), since coadsorbed CO and H were formed below 250 K. Surface Sn allowed for some cyclohexanone to adsorb reversibly. C(6)H(10)O dissociated on the (2 × 2) surface to form CO and H(2)O at low coverages, and methane and H(2) in smaller amounts than on Pt(111). Adsorption of cyclohexanone on (√3 × √3)R30°-Sn/Pt(111) at 90 K was mostly reversible. DFT calculations suggest that C(6)H(10)O adsorbs on Pt(111) in two configurations: by bonding weakly through oxygen to an atop Pt site and more strongly through simultaneously oxygen and carbon of the carbonyl to a bridged Pt-Pt site. In contrast, on alloy surfaces, C(6)H(10)O bonds preferentially to Sn. The presence of Sn, furthermore, is predicted to make the formation of the strongly bound C(6)H(10)O species bonding through O and C, which is a likely decomposition precursor, thermodynamically unfavorable. Alloying with Sn, thus, is shown to moderate adsorptive and reactive activity of Pt(111).  相似文献   

4.
Molecular orientations and assembled structures of C(60) molecules on Pt(111) have been characterized by low-temperature scanning tunneling microscopy for coverage between 0.1 ML and 1.5 ML. At room temperature, C(60) molecules preferentially decorate the steps and nucleate into single layer islands (SLIs) with hexagonal close-packed structures upon increasing coverage. C(60) islands comprise two differently oriented C(60)∕Pt(111)-(√13?×?√13) R13.9° phases, in which five types of molecular orientation of C(60) carbon cage configurations are clearly identified by the high-resolution scanning tunneling microscopy image. Further annealing treatment leads to more uniform molecular orientation without apparent aggregation of C(60) SLIs. As coverage increases above 1 ML, domains corresponding to (2√3?×?2√3) R30° superstructure appear. To explain the above transformation, an interfacial reconstruction model is proposed according to the detailed study of the molecular adsorption structures in different domains.  相似文献   

5.
The orientation and adsorption site for C(60) molecules on Au(111) has been studied using low temperature scanning tunneling microscopy. A complex orientational ordering has been observed for molecules inside the "in-phase" (R0°) domain. A 7-molecule cluster consisting a central molecule sitting atop of a gold atom and 6 tilted surrounding molecules is identified as the structural motif. The 2√3 × 2√3-R30° phase consists of molecules bonding to a gold atomic vacancies with a preferred azimuthal orientation. The quasi-periodic R14° phase is composed of groups of similarly oriented molecules with the groups organized into a 4√3 × 4√3-R30° like super-lattice unit cell.  相似文献   

6.
采用第一性原理的密度泛函理论研究单个氢原子和多个氢原子在Be(0001)表面吸附性质.给出了氢吸附Be(0001)薄膜表面的原子结构、吸附能、饱和度、功函数、偶极修正等特性参数.同时也讨论了相关吸附性质与氢原子覆盖度(0.06-1.33ML)的关系.计算结果表明:氢原子的吸附位置与覆盖度之间有强烈的依赖关系,覆盖度低于0.67ML时,氢原子能量上易于占据fcc或hcp的中空位置;覆盖度为0.78ML时,中空位与桥位为氢原子的最佳吸附位;覆盖度在0.89到1.00ML时,桥位是氢原子吸附能量最有利的位置;以上覆盖度中Be(0001)表面最外层铍原子的结构均没有发生明显变化.当覆盖度为1.11-1.33ML,高覆盖度下Be(0001)表面的最外层铍原子部分发生膨胀,近邻氢原子渗入到铍表面次层,氢原子易于占据在hcp和桥位.吸附结构中的氢原子比氢分子中的原子稳定.当覆盖度大1.33ML时,计算结果没有发现相对于氢分子更稳定的吸氢结构.同时从分析偶极修正和氢原子吸附垂直高度随覆盖度的变化关系判断氢覆盖度为1.33ML时,在Be(0001)表面吸附达到饱和.  相似文献   

7.
The reconstructed structures of Cu(100) surface induced by O2 dissociative adsorption wereinvestigated by low energy electron diffraction and scanning tunneling microscopy. At lower oxygen coverage, it was found that two reconstructed structures, i.e. c(2×2)-O and (√2×2√2)R45°-O are coexistent. The domain size of the c(2×2)-O structure decreased with the increasing of O2 exposure. The reconstructed structure at very small coverage was also investigated and a “zigzag” structure was observed at this stage. The “zigzag” structure was identified as boundaries of local c(2×2) domains. It was found that the strip region shows much stronger molecule-substrate interaction than that of oxygen covered regions, making it a proper template for patterned organic films. The sequence of the thermal stability was found as zigzag structure>c(2×2)>(√2×2√2)R45°-O.  相似文献   

8.
This study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000 K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (√3×√3)R30° structure for low coverages (≤0.33 ML) and a star-shaped compression structure for higher coverages (0.33–0.43 ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.  相似文献   

9.
We have performed ab initio calculations for the adsorption of L-cysteine on Ag(111) using density functional theory. We have focused on two possible adsorbed species: the L-cysteine radical (?S-CH(2)-CH-NH(2)-COOH) adsorbed almost flat at a bridge site, slightly displaced toward an fcc location, and the zwitterionic radical Z-cysteine (?S-CH(2)-CH-NH(3)(+)-COO(-)) adsorbed at a bridge site, shifted to a hcp site forming a (4 × 4) unit cell (θ = 0.06) and a (√3 × √3) R 30° unit cell (θ = 0.33), respectively. Special attention has been paid to the electronic structure of the system. The adsorbate-silver bond formation has been exhaustively investigated by analyzing the density of states projected onto the different atoms of the molecule, and by charge density difference calculations. A complicated interplay between sp and d states of silver in the formation of bonds between the adsorbates and the surface has been found. The role of the carboxyl group in the interaction with the surface has been also analyzed.  相似文献   

10.
The structure and dynamics of the adsorbate CO(2)/KCl(100) from a diluted phase to a saturated monolayer have been investigated with He atom scattering (HAS), low-energy electron diffraction (LEED), and polarization dependent infrared spectroscopy (PIRS). Two adsorbate phases with different CO(2) coverage have been found. The low-coverage phase is disordered at temperatures near 80 K and becomes at least partially ordered at lower temperatures, characterized by a (2√2×√2)R45° diffraction pattern. The saturated 2D phase has a high long-range order and exhibits (6√2×√2)R45° symmetry. Its isosteric heat of adsorption is 26 ± 4 kJ mol(-1). According to PIRS, the molecules are oriented nearly parallel to the surface, the average tilt angle in the saturated monolayer phase is 10° with respect to the surface plane. For both phases, structure models are proposed by means of potential calculations. For the saturated monolayer phase, a striped herringbone structure with 12 inequivalent molecules is deduced. The simulation of infrared spectra based on the proposed structures and the vibrational exciton approach gives reasonable agreement between experimental and simulated infrared spectra.  相似文献   

11.
用STM对含氧桥的金属-有机配合物[Cu2(μ-O)(dptap)4(NO3)2]分子在Au(111)表面的吸附行为进行了研究. STM结果表明, 该分子同时存在非解离吸附和解离吸附, 大部分分子在Au(111)面形成有规则的排列, 少量分子发生解离吸附, 并形成(√3×√3)R30°Cu原子吸附结构. 探讨了两种吸附现象共存的起因.  相似文献   

12.
用密度泛函理论研究了氢原子的污染对于Ru(0001)表面结构的影响. 通过PAW(projector-augmented wave)总能计算研究了p(1×1)、p(1×2)、(3^(1/2)×3^(1/2))R30°和p(2×2)等几种氢原子覆盖度下的吸附结构, 以及在上述结构下Ru(0001)面fcc(面心立方)格点和hcp(六方密堆)格点的氢原子吸附. 所得结果表明, 在p(1×1)-H、p(1×2)-H、(3^(1/2)×3^(1/2))R30°-H和p(2×2)-H几种H原子覆盖度下, 以p(1×1)-H结构单个氢原子吸附能为最大. 在p(1×1)-H吸附结构下,由于氢原子吸附导致的Ru(0001) 表面第一层Ru 原子收缩的理论计算数值分别为-1.11%(hcp 吸附)和-1.55%(fcc 吸附), 因此实际上最有可能的情况是两种吸附方式都有一定的几率. 而实验中观察到的“清洁”Ru(0001)表面实际上是有少量氢原子污染的表面. 不同覆盖度和氢分压下氢原子吸附的污染对Ru(0001)表面结构有极大的影响,其表面的各种特性都会随覆盖度的不同而产生相应的变化.  相似文献   

13.
用密度泛函理论研究了氢原子的污染对于Ti(0001)表面结构的影响. 通过PAW总能计算研究了p(1×1)、p(1×2)、3^1/2×3^1/2R30[deg]和p(2×2)等几种氢原子覆盖度下的吸附结构, 以及在上述结构下Ti(0001)面fcc格点和hcp格点的氢原子吸附. 结果表明, 在p(1×1)-H、p(1×2)-H、3^1/2×3^1/2R30[deg]-H和p(2×2)-H几种H原子覆盖度下, 以p(1×1)-H结构的单个氢原子吸附能为最大. 在p(1×1)-H吸附结构下, 由于氢原子吸附导致的Ti(0001)表面Ti原子层收缩的理论计算数值分别为-2.85%(hcp吸附)和-4.31%(fcc吸附), 因此实际上最有可能的情况是两种吸附方式都有一定的几率. 而实验中观察到的所谓“清洁”Ti(0001)表面实际上是有少量氢原子污染的表面. 不同覆盖度和氢分压下, 氢原子吸附的污染对Ti(0001)表面结构有极大的影响, 其表面的各种特性都会随覆盖度的不同而产生相应的变化.  相似文献   

14.
Dimethylglyoxime (DMG) adsorbed on Au(111) was investigated using electrochemical scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM experiments revealed three different structures of adsorbed DMG at open circuit potential (~0.07 V versus Ag/AgCl): (2√3×2√3)R30°-α, (2√3×4√3)R30°-β, and (2√3×4√3)R30°-γ. The coverage of adsorbed DMG obtained using XPS was 0.33. A combination of structural and quantitative information identified the adsorbed DMG as an anionic tetramer, held together by intermolecular hydrogen bonding and arrayed in three ordered patterns. Domains of adsorbed DMG underwent phase transitions between the observed structures, most likely due to the influence of the STM tip. However, a significant correlation between the observed structures and the imaging conditions was not found. The ordered layers existed only at open circuit potential as evidenced by their disappearance when the potential was shifted to 0.2 or -0.15 V. The ordered layers were also removed by immersion in a solution of Ni(2+), implying that the adsorbed DMG was converted to a soluble dimer complex with the Ni(2+) ion. This particular observation is discussed in terms of the rigidity of the organic network.  相似文献   

15.
The adsorption energetics of NO and CO on Pt(111) are studied using an ab initio embedding theory. The Pt(111) surface is modeled as a three-layer, 28-atom cluster with the Pt atoms fixed at bulk lattice sites. Molecular NO is adsorbed at high symmetry sites on Pt(111), with the fcc threefold site energetically more favorable than the hcp threefold and bridge sites. The calculated adsorption energy at the fcc threefold site is 1.90 eV, with an N-surface distance of 1.23 Å. The NO molecular axis is perpendicular to the Pt(111) surface. Tilting the O atom away from the surface normal destablizes adsorbed NO at all adsorption sites considered. On-top Pt adsorption has been ruled out. The Pt(111) potential surface is very flat for CO adsorption, and the diffusion barriers from hcp to fcc sites are 0.03 eV and less than 0.06 eV across the bridge and the atop sites, respectively. Calculated adsorption energies are 1.67, 1.54, 1.51, and 1.60 eV at the fcc threefold, hcp threefold, bridge, and atop sites, respectively. Calculated C-surface distances are 1.24 Å at the fcc threefold site and 1.83 Å at the atop site. It is concluded that NO and CO adsorption energetics and geometries are different on Pt(111).  相似文献   

16.
H(2)S forms a rich variety of structures on Ag(111) at low temperature and submonolayer coverage. The molecules decorate step edges, exist as isolated entities on terraces, and aggregate into clusters and islands, under various conditions. One type of island exhibits a (√37×√37)R25.3° unit cell. Typically, molecules in the clusters and islands are separated by about 0.4 nm, the same as the S-S separation in crystalline H(2)S. Density functional theory indicates that hydrogen-bonded clusters contain two types of molecules. One is very similar to an isolated adsorbed H(2)S molecule, with both S-H bonds nearly parallel to the surface. The other has a S-H bond pointed toward the surface. The potential energy surface for adsorption and diffusion is very smooth.  相似文献   

17.
The adsorption and thermal stability of 2-octylthieno[3,4-b]thiophene (OTTP) on the Au(111) surfaces have been studied using scanning tunneling microscopy (STM), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). UHV-STM studies revealed that the vapor-deposited OTTP on Au(111) generated disordered adlayers with monolayer thickness even at saturation coverage. XPS and TPD studies indicated that OTTP molecules on Au(111) are stable up to 450K and further heating of the sample resulted in thermal decomposition to produce H(2) and H(2)S via C-S bond scission in the thieno-thiophene rings. Dehydrogenation continues to occur above 600K and the molecules were ultimately transformed to carbon clusters at 900K. Highly resolved air-STM images showed that OTTP adlayers on Au(111) prepared from solution are composed of a well-ordered and low-coverage phase where the molecules lie flat on the surface, which can be assigned as a (9×2√33)R5° structure. Finally, based on analysis of STM, TPD, and XPS results, we propose a thermal decomposition mechanism of OTTP on Au(111) as a function of annealing temperature.  相似文献   

18.
High resolution spot profile analysis low energy electron diffraction (SPA-LEED) and variable temperature scanning tunneling microscopy (STM) have been used to observe the growth of Pb on the Pb/Si(111)-α√3×√3 phase, which is driven by quantum size effects (QSE). A change in the rotation of the Pb grown islands with respect to the Si substrate has been observed with increasing coverage θ. At lower coverage, separated two-step islands are grown and are aligned with the [110] axis of the substrate. With increasing coverage above 1.5 ML, of the islands coalesce and form a bilayer, with additional islands grown on top. The preferred Pb island orientation changes to 5.6° with respect to the [110] direction. These changes at the metal/semiconductor buried interface are obtained both with SPA LEED and STM as changes to the period of the Moire pattern. The method of analysis of the corrugation period and rotation angle of the Moire pattern measured with diffraction and STM can be applied to obtain the structure of buried metal/substrate interfaces in other epitaxial systems.  相似文献   

19.
We studied the coverage-dependent self-assembly of the flat-lying phase of ethylthiolate on Au(111). At low coverage, we observed the formation of short stripes of chiral Au-(SC(2)H(5))(2) complexes that arrange in a disordered phase. The latter grow partly at the expense of the native Au(111) surface reconstruction, which is fully lifted for a coverage of ~0.60 ML. We found that the lift of the reconstruction and evaporation from step edges are competing adatom sources. Close to saturation coverage (0.70 to 0.75 ML), large, well-ordered domains with a (8 × √3)rectangular superstructure formed. Alternation of chirality was found in adjacent stripes as already reported for other short alkanethiolates. We suggest that, because of a simple geometrical consideration, the chirality should, on the contrary, be preserved in the stripe phase of longer alkanethiolates.  相似文献   

20.
Ultrathin films of the ionic liquid 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C(1)C(1)Im][Tf(2)N]) were deposited on differently terminated Ni(111) single crystal surfaces. The initial wetting behaviour, the growth characteristics, the molecular arrangement at the interface, and thermal reactivity were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). On clean Ni(111), the initial growth occurs in a layer-by-layer mode. At submonolayer coverages up to at least 0.40 ML, a preferential arrangement of the IL ions in a bilayer structure, with the imidazolium cations in contact with the Ni surface atoms and the anions on top of the cation, is deduced. For higher coverages, a transition to a checkerboard-type arrangement occurs, which is most likely due to repulsive dipole-dipole interactions in the first layer. An overall preference for a checkerboard-type adsorption behaviour, i.e., anions and cations adsorbing next to each other, is found on the oxygen-precovered O(√3×√3)R30° Ni(111) surface. The thermal stability of adsorbed IL layers on Ni(111) and on a fully oxidised Ni(111) surface was studied by heating the layers to elevated temperatures. For clean Ni(111) reversible adsorption takes place. For the oxidised surface, however, only cation-related moieties desorb, starting at ~450 K, while anion-related signals remain on the surface up to much higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号