首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Matrix solid‐phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High‐performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid‐phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid‐phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion‐pairing agent (NH4PF6), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3–13.4 μg/kg.  相似文献   

2.
The matrix solid-phase dispersion (MSPD) was applied for extracting seven sulfonamides (SAs) in liver samples. The separation and determination were carried out by high-performance liquid chromatography. The analytes were derivated with fluorescamine and detected with fluorescence detector. The types of dispersion adsorbents for MSPD were examined and the highest recovery was obtained when the diatomaceous earth was used as the dispersion adsorbent and the mass ratio of dispersion adsorbent to sample was 3:1. The acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the SAs in liver samples was 5.0-1000.0 ng/g. The porcine, chicken and cattle liver samples were analyzed and the average recoveries of seven SAs were higher than 84.6%.  相似文献   

3.
A solid-phase extraction (SPE) using graphene as adsorbent coupled with capillary zone electrophoresis method was developed for the determination of four sulfonamide residues (sulfadimidine, sulfadimethoxine, sulfathiazole and sulfadiazine) in meat sample. Several condition parameters, such as elution solvents and volumes, sample pH and sample volume were optimized to obtain high SPE recoveries and extraction efficiency. Intra-day precisions of sulfonamides were in the range of 2.5–2.6 % and the inter-day precisions of sulfonamides were in the range of 2.6–3.4 %. Recoveries were 60.9–66.6 % for sulfadiazine and 86.1–111.4 % for other three sulfonamides in spiked meat sample. The developed method was successfully applied for the determination of sulfonamides in meat samples.  相似文献   

4.
建立了一种基于固相萃取技术同时测定牛奶中22种磺胺类兽药残留的高效液相色谱分析方法.样品经乙腈-甲酸混合溶液提取,乙腈饱和的正己烷除酯后,HLB固相萃取柱净化,以甲醇-2 mmol/L乙酸铵(含0.2%乙酸)为流动相进行梯度洗脱,XBridge C18色谱柱进行分离,采用光电二极管阵列检测器检测,外标法定量.磺胺类化合...  相似文献   

5.
建立了高效液相色谱-二极管阵列检测法同时测定兽药粉剂中11种磺胺类药物的分析方法。试样采用95%乙腈提取,经碱性氧化铝固相萃取小柱净化,15%乙腈复溶残渣后用Agilent TC-C18色谱柱分离,0.017 mol/L磷酸溶液和乙腈为流动相进行梯度洗脱,二极管阵列检测器进行检测。结果表明,在优化实验条件下,11种磺胺类药物的色谱分离和相应光谱图匹配理想;在0.25~10.0 mg/L范围内线性关系良好;兽药粉剂中添加0.5~5.0 mg/kg水平的11种磺胺类药物的回收率在67%~97%之间,相对标准偏差为1.5%~9.9%;以3倍信噪比(S/N=3)结合相应光谱图计算得11种磺胺类药物的检出限均为0.25 mg/kg。  相似文献   

6.
Methods are reported for determining six sulfonamides used as veterinary drugs in water and soil samples. Analytes are isolated from water samples by solid-phase extraction on HBL cartridges and pre-concentration factors of up to 250 were obtained. Soil samples are treated using microwave-assisted extraction of analytes with acetonitrile and further clean up by solid-phase extraction. Determination is carried out by high-performance liquid chromatography using fluorimetric detection with precolumn derivatization with fluorescamine. The separation of the derivatized sulfonamides is performed on an octadecyl column using binary gradient elution with acetate buffer/acetonitrile mixtures. For water analysis, the detection limits of the whole process are in the low nanogram per liter level and recovery rates range from 70 to 104%, with standard deviations 2-11%. For soil analysis, extraction efficiency is evaluated using three soil samples with different physicochemical characteristics. Recovery rates range from 60 to 98% and detection limits are between 1 and 6ngg(-1).  相似文献   

7.
An analytical HPLC method for the simultaneous determination of eight sulfonamides in swine wastewater was developed. The samples were collected from three states in Malaysia. Sample clean up was carried out by employing solid-phase extraction using a 60 mg Oasis HLB (Waters) cartridge with 3 ml reservoir. The HPLC column used was Supelcosil C18 (250 mm x 4.6mm I.D.) and elution was carried out using gradient mode. The mobile phases used were acetonitrile and 0.5% acetic acid in purified water. Antibiotics were detected using UV absorbance at 272 nm. Recoveries obtained for sulphanilamide ranged from 31.9+/-5.1% to 36.2+/-1.0%, while recoveries for other sulfa drugs studied were from 91.9+/-5.0% to 106.0+/-1.1%. The limit of quantitation (LOQ) for sulfamerazine, sulfamethazine and sulfamethoxypyridazine was 7.5 ng/L, while the LOQ for the other studied antibiotics was 5.0 ng/L. The method was used to analyse sulfonamides in wastewater collected from selected Malaysian swine facilities.  相似文献   

8.
Matrix solid-phase dispersion(MSPD) was developed for the extraction of four alkaloids, including aconitine, mesaconitine, hypaconitine and deoxyaconitine, from the roots of Aconitum kusnezoffii Reichb. The determination of the analyte was carried out by high performance liquid chromatography with UV detection. The alkaline alumina was used as sorbent. The mixture of acetonitrile and water was used as elution solvent. Several extraction parameters, such as type of sorbent, the ratio of sample to solid suppo...  相似文献   

9.
Ion-spray mass spectrometry was investigated for the analysis of 21 antibacterial sulfonamide drugs. All of the sulfonamides analyzed gave positive ion mass spectra with abundant protonated molecules and no fragmentation. Tandem mass spectrometry (MS-MS) using collision-induced dissociation provided structural information, allowing the identification of common fragmentation pathways and the differentiation of isomeric and isobaric sulfonamides. A reversed-phase high-performance liquid chromatographic method was developed, using gradient elution and ultraviolet diode-array detection (DAD), enabling the separation of 16 of the sulfonamides. Combined liquid chromatography (LC)-MS was accomplished using the ion-spray interface. Analyses of a mixture of sulfonamide standards were performed with gradient elution and the mass spectrometer configured for full-scan acquisition, selected-ion monitoring, or selected-reaction monitoring. Procedures for the analysis of sulfadimethoxine (SDM), a representative sulfonamide used in the aquaculture industry, are described. The presence of SDM in cultured salmon flesh was confirmed at levels as low as 25 ng/g by a combination of LC-DAD and LC-MS-MS.  相似文献   

10.
Solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) was applied for the extraction of six organophosphorous pesticides (OPPs) in water samples. The analytes considered in this study were determined by gas chromatography with mass spectrometry and included prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction conditions (extraction solvent and elution/dispersion solvents nature, extraction solvent volume, elution solvent volume, water volume and sample volume) were tested for SPE-DLLME with these analytes and the best results were obtained using carbon tetrachloride as the extraction solvent and acetone as the elution/dispersion solvent. Calibration curves for the determination of OPPs in water samples were constructed in the concentration range of 10-100 ng/L. Limits of detection (LODs) ranged from 38 to 230 pg/L values that are below the maximum admissible level for drinking water (100 ng/L). Relative standard deviations (RSD) were between 8.6 and 10.4% for a fortification level of 100 ng/L. At the same fortification level, the relative recoveries (R.R.) of tap, well and irrigation water samples were in the range of 30.2-97.1%.  相似文献   

11.
A comparison between the extraction yields of xanthones and flavanones from the root bark of the Maclura pomifera by solid-liquid extraction (SLE), matrix solid phase dispersion (MSPD), and an alternative method using sea sand as a sample disruptor, is presented here. Two extraction solvents were used for all extraction techniques, dichloromethane and methanol:water, (9:1, v/v). The extraction procedures were reproducible as the R.S.D. values were less than 5% for almost all compounds. A recovery above 80% was obtained for macluraxanthone using the sea sand extraction procedure. Statistical treatment, ANOVA-single factor, was used to evaluate the different extraction procedures, and homogenization of plant material with sand followed by elution with dichloromethane provided the most efficient and rapid extraction method.  相似文献   

12.
Capsule phase microextraction is introduced herein for the first time to determine four sulfonamide residues in milk samples (sulfanilamide, sulfadiazine, sulfamethizole, and sulfathiazole). The technique eloquently integrates filtration and stirring mechanism into the extraction device, as such no filtration of the sample is needed prior to introducing the extraction device into the sample, and when placed on a magnetic stirrer, the device spins itself in order to diffuse the sample, resulting in faster extraction equilibrium. Microextraction capsules consist of three main parts; a magnet, a cellulose fiber substrate coated with high performance sol‐gel hybrid organic‐inorganic sorbent, and a porous membrane. Various encapsulated sol‐gel sorbents were tested in standard solutions prepared in deionized water and milk samples under different operational conditions. Analyte extraction time and elution time, type of sol‐gel sorbent, elution solvent, as well as the ratio of the sorbent to the elution solvent were among the optimized conditions. The protocols that yielded the best absolute recovery rates were subsequently tested in various milk samples. Method validation was performed in terms of linearity, accuracy and precision, reusability and ruggedness using the Youden test. The examined sulfonamides were subsequently analysed by reversed phase high performance liquid chromatography with diode array detection.  相似文献   

13.
A method based on matrix solid‐phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid‐phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid‐phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound‐assisted extraction, the proposed matrix solid‐phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices.  相似文献   

14.
Ma Q  Yu Q  Luo Y  Feng Y 《色谱》2011,29(7):624-630
将聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯) (poly(MAA-co-EDMA))聚合物原位聚合于玻璃内插管外表面上,得到一种多孔聚合物涂层;将其作为搅拌棒吸附萃取的萃取介质,考察了其对磺胺类药物的萃取性能;最后将其与高效液相色谱-电喷雾质谱(HPLC-ESI-MS)联用,建立了一种牛奶中4种磺胺类药物的检测方法。在最佳条件下,牛奶中4种磺胺类药物的检出限(S/N=3)和定量限(S/N=10)分别为0.11~0.52 μg/L和0.35~1.72 μg/L。在1~500 μg/L的范围内峰面积与质量浓度具有良好的线性关系,日内、日间测定的相对标准偏差不高于11.3%。结果表明,该方法简便、灵敏度高且成本低,适合于牛奶中磺胺类药物的检测。  相似文献   

15.
Matrix solid-phase dispersion (MSPD) was used for sample preparation of plant material (Melissa officinalis, Lemon Balm) prior to liquid chromatography of rosmarinic, caffeic and protocatechuic acids, phenolic compounds present in this herb. Different MSPD sorbents and various elution agents were tested and the optimal extraction conditions determined with the aim to obtain extraction recoveries greater than 90% for all analytes.  相似文献   

16.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   

17.
A new, fast and low-cost sample preparation for the determination of sulfonamide (SA) residues in chicken muscle by LC technique has been developed. The procedure involves single extraction of sample with acetonitrile, followed by a rapid clean-up and was called "dispersive solid-phase extraction" (dispersive SPE). Using dispersive SPE 25 mg of octadecyl sorbent was added to 1 ml of acetonitrile extract, mixed and centrifuged. The acetonitrile layer was evaporated and residue was dissolved in acetate buffer (pH 3.5). Analysed compounds were detected by fluorescence detector after pre-column derivatization with fluorescamine. The separation of analytes was performed with gradient elution with mobile phase methanol: 2% acetic acid and RP-LC analytical column. The whole procedure was evaluated for six sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfametoxypirydazine, sulfametoxazole and sulfadimetoxine) according to the European Commission Decision 2002/657/EC. Specificity, decision limit (CCalpha), detection capacity (CCbeta), trueness and precision were determined during validation process. The dispersive SPE with octadecyl sorbent was found suitable for sample preparation before sulfonamide determination in chicken muscle. As it was found the most of endogenous matrix components were removed and the analytes were isolated from spiked samples with recoveries above 90%. The used analytical conditions allow to successively separate all the tested sulfonamides with the limit of detection at the level of 1-5 microg/kg. The method is simple, rapid and more effective than conventional methods.  相似文献   

18.
The objective of this work is to optimize a solid-phase extraction procedure for the simultaneous determination of sulfadiazine, sulfamerazine, and sulfamethazine in milk by fluorimetric detection. For this task, an alternative strategy is employed, which allows one to reduce noticeably the number of experiments without losing the quality of the estimations. It consists of the use of a D-optimal design together with PARAFAC decomposition for the calculation of the response in the experimental design. Effects of amount of cartridge sorbent, kind of milk, volume of conditioning solutions, kind of wash and elution, and kind of mixture of sulfonamides have been evaluated, for maximizing sulfonamide mean recovery and minimizing its standard deviation. Since milk without sulfonamides may give some matrix effect over the fluorescence signal, its behavior has also been studied. Optimal conditions have been selected where the ratio between sulfonamide recovery and milk without sulfonamides was the highest, which are 500 mg of cartridge sorbent, acid wash, and elution and 3 mL of conditioning solutions. The type of milk and mixture of sulfonamides not significant. This makes the procedure suitable for the combined determination of sulfadiazine, sulfamerazine, and sulfamethazine in any kind of milk. Finally, an experimental procedure is proposed, obtaining a sulfonamide mean recovery equal to 68.5% with values of standard deviation between 7 and 8 μg kg−1.  相似文献   

19.
An HPLC method with fluorescence detection is proposed for the quantitative determination of residues of ten of the most used sulfonamides as their derivatives. Sulfonamides were isolated from meat, mix meat and kidney with ethyl acetate (first extraction) and acetone (second extraction) and further purified by partitioning three times with water-methylene chloride. The recovery for mix meat spiked with 1, 5 and 10 microg/kg of sulfonamides averaged 64%, 68% and 75%, respectively. Limits of quantitation were 1 microg/kg for sulfaquinoxaline and 0.5 microg/kg for the remaining sulfonamides.  相似文献   

20.
刘芃岩  姜宁  王英峰  晏利芝 《色谱》2008,26(3):348-352
建立了一种同时测定鸡肉中两类共10种兽药(3种磺胺和7种氟喹诺酮类药物)残留量的高效液相色谱-电喷雾串联质谱方法(HPLC -ESI-MS2)。样品经2%醋酸-乙腈提取,正己烷脱脂,过ENVI-18固相萃取柱净化,经氮气吹干后,残余物用流动相定容到1 mL。以乙腈和 0.05%甲酸溶液作为流动相,采用梯度洗脱程序进行液相色谱分离,用质谱检测器进行定性和定量分析,并对10种药物的二级质谱碎裂方 式进行分析。10种药物在0.02~2.0 mg/L范围内线性良好,相关系数均大于0.9988。检出限(LOD)为1.10~6.85 μg/kg,定量限(LOQ) 为3.68~22.85 μg/kg,样品的平均加标回收率为68.9%~102.6%,相对标准偏差均小于8.6%(n=3)。实验结果表明,该方法灵敏度高,重 现性好,确证能力强,分析时间短,可满足动物源性食品中磺胺和氟喹诺酮类药物的残留分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号