首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper the situation in which weak spring Duffing equation gets into the chaos on account of small perturbation is discussed with Melnikov-Holmes’ method, and some phenomena in which the different subharmonic and the ultrasubharmonic coexist with the chaos are discovered.  相似文献   

2.
IntroductionIn the computation of petroleum reservoir engineering design,the nonlinear quadraticgradient term is neglected by assuming small pressure gradient or small compressibility.Theassumption of small pressure gradient may cause significant errors i…  相似文献   

3.
Analytical solutions for some nonlinear evolution equations   总被引:1,自引:0,他引:1  
IntroductionItiswell_knownthatmanyimportantdynamicsprocessescanbedescribedbyspecificnonlinearpartialdifferentialequations .Whenanonlinearpartialdifferentialequationisusedtodescribeaphysicalparameterthatshowssomekindsofpropagationoraggregationproperties,oneofthemostimportantphysicalmotivationsistosolvethepartialdifferentialequationwithacertaintypeoftravellingwavesolution .Inthepastseveraldecades,therehavebeenmanyattemptsinthisfieldbothbymathematiciansandphysicists[1]- [16 ],however,duetothecomp…  相似文献   

4.
Fractalgeometryisapowerfultooltodescribecomplexphenomenon.Especiallyitisappropriatetoscalethenonuniformityandnonsequenceofporousmedia.Ifthemechanicsoffluidflowthroughporousmediaisstudiedbyusingfractal,thediscernibleandcognitiveabilityforporousmediaan…  相似文献   

5.
This paper aims at analyzing the shapes of the bounded traveling wave solu- tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi- tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi- mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so- lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.  相似文献   

6.
The main interest of the present investigation is to generate exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous electrically conducting fluid flow motion due to a disk rotating with a constant angular speed. For an external uniform magnetic field applied perpendicular to the plane of the disk, the governing equations allow an exact solution to develop taking into account of the rotational non-axisymmetric stationary conducting flow.Making use of the analytic solution, exact formulas for the angular velocity components as well as for the wall shear stresses are extracted. It is proved analytically that for the specific flow the properly defined thicknesses decay as the magnetic field strength increases in magnitude. Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. The temperature field is shown to accord with the dissipation and the Joule heating. According to Fourier's heat law, a constant heat transfer from the disk to the fluid occurs, though decreases for small magnetic fields because of the dominance of Joule heating, it eventually increases for growing magnetic field parameters.  相似文献   

7.
The problem of magneto‐hydrodynamic fluid flow past a nonlinear stretching sheet in the presence of a transverse magnetic field is analyzed. The governing equations are transformed into a nonlinear ordinary differential equation that is solved using a novel spectral homotopy analysis method and the Matlab in‐built numerical solverttbvp4c. The new technique removes some known limitations of the homotopy analysis method and offers a more systematic way of selecting initial approximations and the optimal auxiliary parameter ?. A comparison with the numerical solution confirms the robustness, the computational efficiency, and the accuracy of the technique. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
IntroductionForseveralhundredyears,ithasbeenbothimportantanddifficultprojecttoconstructtheanalyticalsolutionsfornonlineardifferentialequations.Manymathematiciansandtheoreticalphysicistshavedonealotofwork[1~ 5 ].However,thereexistlotsofimportantandbeingofp…  相似文献   

9.
General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.  相似文献   

10.
General exact solutions in terms of wavelet expansion are obtained for multiterm time-fractional difusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial diferential equations are converted into time-fractional ordinary diferential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-difusion problems are given to validate the proposed analytical method.  相似文献   

11.
The present paper is concerned with a class of exact solutions to the steady Navier-Stokes equations for the incompressible Newtonian viscous fluid flow motion due to a porous disk rotating with a constant angular speed. The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions with suction and injection through the surface included. The well-known thinning/thickening flow field effect of the suction/injection is better understood from the exact velocity equations obtained. Making use of this solution, analytical formulas corresponding to the permeable wall shear stresses are extracted.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. As a result, exact formulas are obtained for the temperature field which take different forms depending on whether suction or injection is imposed on the wall. The impacts of several quantities are investigated on the resulting temperature field. In accordance with the Fourier‘s heat law, a constant heat transfer from the porous disk to the fluid takes place. Although the influence of dissipation varies, suction enhances the heat transfer rate as opposed to the injection.  相似文献   

12.
By using the method of dynamical systems, the travelling wave solutions of for an integrable nonlinear evolution equation is studied. Exact explicit parametric representations of kink and anti-kink wave, periodic wave solutions and uncountably infinite many smooth solitary wave solutions are given.  相似文献   

13.
A 3-D nonlinear problem of supercavitating flow past an axisymmetric body at a small angle of attack is investigated by means of the perturbation method and Fourier-cosine-expansion method. The first three order perturbation equations are derived in detail and solved numerically using the boundary integral equation method and iterative techniques. Computational results of the hydrodynamic characteristics and cavity shapes of each order are presented for nonaxisymmetric supercavitating flow past cones with various apex-angles at different cavitation numbers. The numerical results are found in good agreement with experimental data. The project supported by the National Natural Science Foundation of China  相似文献   

14.
There are many fault block fields in China. A fault block field consists of fault pools. The small fault pools can be viewed as the closed circle reservoirs in some case. In order to know the pressure change of the developed formation and provide the formation data for developing the fault block fields reasonably, the transient flow should be researched. In this paper, we use the automatic mesh generation technology and the finite element method to solve the transient flow problem for the well located in the closed circle reservoir, especially for the well located in an arbitrary position in the closed circle reservoir. The pressure diffusion process is visualized and the well-location factor concept is first proposed in this paper. The typical curves of pressure vs time for the well with different well-location factors are presented. By comparing numerical results with the analytical solutions of the well located in the center of the closed circle reservoir, the numerical method is verified.  相似文献   

15.
In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those symmetries are used for the governing system of equations to obtain infinitesimal transformations, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.  相似文献   

16.
分形油藏不稳定渗流问题的精确解   总被引:11,自引:1,他引:11  
同登科  葛家理 《力学学报》1998,30(5):621-627
研究了分形油藏无限大地层和有界地层渗流模型,引入了一类有限广义Hankel变换,利用这种变换和Weber变换,在井底定流量和定压生产时,对无限大地层及有界地层(包括封闭和定压地层)六种情况,求得了实空间解析解用双参数(df,ds)来刻画分形油藏的分形特性,分析了分形油藏压力动态特征以及分形参数和边界对压力动态的影响  相似文献   

17.
Exact solutions for three canonical flow problems of a dipolar fluid are obtained: (i) The flow of a dipolar fluid due to a suddenly accelerated plate, (ii) The flow generated by periodic oscillation of a plate, (iii) The flow due to plate oscillation in the presence of a transverse magnetic field. The solutions of some interesting flows caused by an arbitrary velocity of the plate and of certain special oscillations are also obtained.  相似文献   

18.
In this work, the transient incompressible Couette flow and steady-state temperature profiles between two porous parallel plates for slightly rarefied gases are solved exactly. The first-order approximation of slip velocity at the boundaries is used in the formulation. The solution is also applicable for Couette flow in micro-channels under certain circumstances. The influences of mass transfer and a nondimensional slip parameter on slip velocities are discussed. It is also found that the transient slip velocities at the walls are greatly different from the steady-state velocity slips. The influences of velocity slip and temperature slip parameters on the temperature distribution and heat transfer at the walls are analyzed and discussed. It is shown that the slip parameters can greatly change the temperature profiles and heat transfer characteristics at the walls.  相似文献   

19.
《Comptes Rendus Mecanique》2017,345(2):117-124
Simulations using a Restricted Nonlinear (RNL) system, where mean flow distortion resulting from Reynolds stress feedback regenerates rolls, is applied in a channel flow under subcritical conditions. This quasi-linear restriction of the dynamics is used to study invariant solutions located in the bulk of the flow found recently by Rawat et al. (2016) [14]. It is shown that the RNL system truncated to a single streamwise mode for the perturbation supports invariant solutions that are found to bifurcate from a relative periodic orbit into a travelling wave solution when the spanwise size is increasing. In particular, the travelling wave solution exhibits a spanwise localized structure that remains unchanged for large values of the spanwise extent as the invariant solution lying on the lower branch found by Rawat et al. (2016) [14]. In addition, travelling wave solutions provided by this minimal RNL system are self-similar with respect to the Reynolds number based on the centreline velocity, and the half-channel height varying from 2000 to 5000.  相似文献   

20.
In this work it is presented a transient, one-dimensional, adiabatic model for slug flow simulation, which appears when liquid (mixture of oil and water) and gas flow simultaneously through pipes. The model is formed by space and time averaged conservation equations for mass, momentum and energy for each phase, the numerical solution is based on the finite difference technique in the implicit scheme. Velocity, pressure, volumetric fraction and temperature profiles for both phases were predicted for inclination angles from the horizontal to the vertical position (unified model) and ascendant flow. Predictions from the model were validated using field data and ten correlations commonly used in the oil industry. The effects of gas heating or cooling, due to compression and expansion processes, on the predictions and numerical stability, were studied. It was found that when these effects are taken into account, a good behavior of temperature predictions and numerical stability are obtained. The model presents deviations lower than 14% regarding field data and it presents better predictions than most of the correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号