首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compaction     
Compaction of soils is a complex process in which several soil properties as well as compactor characteristics interact. General rules have been developed through years of experience in construction and through a need, in the recent past, to increase the sub-base and base strength of runways to accomodate higher aircraft wheel loads. General guidelines are adequate when there is no need for an accurate prediction of the number of compactor coverages required to effect a given level of soil compaction.During the conduct of a recent program, it was necessary that an estimate be made of the time required to compact soil to a certain strength. A review of the literature indicated that little recent work has been done on compaction and on the modelling of the compaction process. Similitude modelling has been used to predict the trafficability of soft soils. Although the soil compaction criteria are different from those of trafficability, it was felt that similitude modelling could also be applied to compaction. This paper describes the basis for CBR and density models and some indications of their form and prediction ability.  相似文献   

2.
This is a documentary article describing the Institute's work concerning terramechanics. A brief history of the Soil Section outlines its purpose in relating the characteristics of agricultural machinery, the physical properties of soils and crop growth behaviour. The facilities of the Soil Section are described and its success in developing a high-resolution gamma-ray probe to measure soil bulk density and a recording penetrometer is described. Soil compaction measurements have been carried out for alternatives to the conventional tractor wheel and use of a drop-cone to measure soil plastic limit has been developed. Current efforts are focused on performance measurements of multiple-wheel configurations, four-wheel-drive tractors, consideration of soil compaction under modern crawler tracks and research on the effects on crop yield of soil loosening below normal ploughing depth. Development of prediction models for soil compaction is a major interest.  相似文献   

3.
The knowledge of soil electrical and thermal resistivity finds its application in many of the real life engineering projects like laying of high voltage buried power cables, ground modification techniques etc. This necessitates determination of soil electrical resistivity and thermal resistivity and development of a relationship between them. However, as these resistivities mainly depend on the type of the soil (i.e. its physical composition) and its saturation, efforts have been made in this paper, to develop a generalized relationship to relate them. Validation of the relationship has been conducted vis-à-vis the results obtained from the laboratory experiments and those reported in literature.  相似文献   

4.
This paper describes an initial investigation that shows the major impact that moisture and vegetation produce on a soil and how that effect may be measured using a thermal camera. In particular, those two variables influence how the soil compacts and, hence, the traversability of a vehicle. A broad set of experiments, under different weather conditions and with different soils, demonstrate that thermal properties derived from the thermal camera (i.e. thermal inertia) increase when moisture content of sandy soils increases. In addition to that, a relation is observed between thermal inertia and traversability (lower thermal inertia, worse traction; and vice versa). Another key behavior is noticed for vegetated soils, where a similar thermal inertia to wet sand is obtained but with only a third of moisture content. These results may be considered for maximizing traversability over sandy soils with higher thermal inertias, what eventually means higher compaction and safer routes. To the authors’ knowledge, this is the first work addressing the correlation between moisture content and vegetation, and the thermal properties of a soil using a light-weight thermal camera that can be mounted on a mobile robot.  相似文献   

5.
Laboratory techniques to evaluate thermal conductivity for some soils   总被引:1,自引:0,他引:1  
The thermal conductivity of two soils was investigated through laboratory studies. These laboratory experiments used the single probe and dual probe methods to measure and compare thermal conductivities. The soils used were classified as sand and loam. Thermal conductivity measured using single probe method ranged from 0.95 to 2.11 for sand and from 0.49 to 0.76 W/m K for loam. Thermal conductivity measured using dual probe method ranged from 0.98 to 2.17 for sand and from 0.51 to 0.78 W/m K for loam. Finally, it was found that sand had higher values of thermal conductivity than loam for all soil conditions studied.  相似文献   

6.
固化滨海盐渍土路用性能的室内试验与现场测试   总被引:4,自引:0,他引:4  
王沛  柴寿喜 《力学学报》2011,19(3):440-446
渤海湾西海岸带地区的路堤多为填方型式,且以滨海盐渍土为主要填料。以滨海盐渍土填筑路堤,须解决土的盐胀、溶陷和吸湿软化带来的强度下降和稳定性降低问题,以进行土的改性或固化处理。为降低工程费用,固化材料应以常规的无机材料为主,辅助少量的高分子材料。为研究滨海盐渍土填筑路堤的力学性能,完成了石灰固化土和石灰+SH固土剂固化土的无侧限抗压强度、劈裂法抗拉强度、三轴抗剪强度和加州承载比等室内试验,同期还进行了固化土的现场碾压试验,检测了碾压固化土的压实度、平整度、回弹弯沉、加州承载比和回弹模量等指标。试验与研究结果显示:(1)石灰固化土和石灰+SH固土剂固化土均满足填筑路堤的强度和变形指标要求,后者的力学性能优于前者; (2)SH固土剂干燥后的胶膜包裹了土颗粒,且在颗粒间形成了抗水的胶结联结,胶丝在土的孔隙内形成了絮状联结网。胶膜和胶丝网共同作用,提高了固化土的强度、抗变形能力和水稳性; (3)2种固化土的现场碾压试验效果都很好,碾压固化土的现场测试结果与固化土的室内试验结果相一致。石灰+SH固土剂固化土的碾压性能和力学指标均满足"公路路基设计规范"的要求,效果良好,这种固化方法适宜在滨海盐渍土地区推广使用。  相似文献   

7.
刘勇  王作雷  毕勤胜 《力学学报》2008,40(4):572-576
讨论了具有内共振线性和非线性耦合系统的混沌相位同步. 通过引入混 沌运动的相位定义说明2个子系统固有频率的调谐参数$\sigma $对相位同步的影响. 随着线性耦合力的增加,相位同步效应增强,然而随着非线性耦合力的 增加,相位同步效应减弱. 揭示了耦合系统的相位动力学与Lyapunov指数变化有关.  相似文献   

8.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

9.
Agricultural traffic impacts on soil   总被引:2,自引:0,他引:2  
Alternate configurations of tires and tracks vary in their ability to generate tractive forces. These tractive elements also vary in the way that they impact the soil with some causing more soil disturbance than others. This soil disturbance includes soil compaction and rut formation which negatively impacts rainfall infiltration, rooting, and crop production while potentially increasing soil erosion and runoff. This paper will review a portion of the agricultural research that has been conducted related to soil impacts caused by the use of vehicle traffic in agricultural fields. Recommendations will also be made for ways to minimize the effects of vehicle traffic on soils when trafficking is necessary. These include: reducing axle load; reducing tractive element–soil contact stress by using radial tires, duals, and tracks; increasing soil drying prior to traffic; using conservation tillage systems which minimize vehicle traffic; using controlled traffic systems which eliminate random vehicle traffic across fields; and subsoiling to eliminate compacted soil profiles in crop growth zones. Soil compaction resulting from vehicle traffic may not be able to be completely eliminated, but it can be controlled and reduced through intelligent management of vehicle traffic.  相似文献   

10.
The dynamic properties of soil under impact loads are studied experimentally and numerically. By analyzing the microstructural photos of soils with and without impact, it is shown that impact loads can destroy the original structures in the compact area, where the soil grains are rearranged regularly and form the compact whirlpool structure. Simultaneously, the dynamic impact process of soil is simulated by using the software of Ls-dyna. The time-dependent distribution of the dynamic stress and density is obtained in the soil. Furthermore, the simulation results are consistent with the experimental results. The reinforcement mechanism and the rule of dynamic compaction of soils due to impact load are also elucidated.  相似文献   

11.
In connection with energy conservation studies by subsurface construction, thermal properties of soils are needed for a wide range of temperature and moisture levels. Because of several disadvantages of steady state methods, including the problem of moisture migration, a transient method has been developed which requires substantially less time than steady state tests, reduces the problem of moisture migration, and provides simultaneously thermal conductivities and thermal diffusivities. The design of the apparatus and the test procedure are discussed. The agreement of sample results with steady state measurements assures reliability of the equipment which will be used for generating a wide spectrum of thermal soil data.  相似文献   

12.
土结构性本构模型研究现状综述   总被引:1,自引:0,他引:1  
王国欣  肖树芳 《力学学报》2006,14(5):620-626
土本构模型的建立是一个重要而又复杂的问题,到目前为止,国内外学者们已提出数以百计的土本构模型,诸多文献也对这些模型进行了评述和归纳。然而这些土本构模型多是在扰动土或砂土的基础上发展和建立起来的,它们难以描述由于土结构性引起的各种非线性行为,其计算结果与实际情况相差甚远。天然土体一般都具有一定的结构性,所以有必要建立考虑土结构性影响的土本构模型。针对这个现实,目前有些学者已基于各种理论和方法,提出了一些可以考虑土结构性影响的土本构模型,并得了较好的应用。但在目前的文献中还很少有对土的结构性本构模型研究进行归纳,基于此,本文简要介绍了一下目前土的结构性本构模型研究现状,并提出了这些本构模型在应用中所存在的问题。  相似文献   

13.
Theoretical and applied research has shown that the pressure at a point in the subsurface soil is a function of both the surface unit pressure and the extent of the area over which it is applied (total load). Thirty years ago, most of the soil compaction from vehicle traffic was in the plow layer and was removed by normal cultural practices. As equipment has increased in size and mass, machine designers have increased tire sizes to keep the soil surface unit pressure relatively constant. However, the increase in total axle loads is believed to have caused an increase in compaction at any given depth in the soil profile, resulting in significant compaction in the subsoil.Two tires of different sizes, a standard agricultural tire and a flotation tire were used to support equal loads. Soil pressures were measured at three depths in the soil profile directly beneath each of the tires. Two soils were used and each was prepared first in a uniform density profile, and then they were prepared with a simulated traffic pan (layer of higher density) at a depth of approximately 30 cm.Results showed that the presence of a traffic pan in the soil profile caused higher soil pressures above the pan and lower pressures below it than was the case for a uniform soil profile. The soil contact surface of the flotation tire was approximately 22% greater than the agricultural tire. The greater contact surface did reduce soil pressures at the soil surface, of course, but the total axle load was still the dominant factor in the 18–50 cm-depth range used in this study.  相似文献   

14.
In the present study, it is described the experimental method for measuring the direction and the magnitude of stresses during mechanical soil compaction. These stresses result in an increase in soil density. The greatest effect during the compaction results from developing a vertical component of stress in the soil. This component of stress can be measured experimentally. This stress is a function of many soil factors and the characteristics of the compaction machine. Considering the particular and, in many aspects, unknown processes of these effects on the compaction, the determination of soil compaction with models becomes very difficult. The system equation in the model is obtained by means of dimensional and numerical analysis using special computer programs.  相似文献   

15.
Esperiements were conducted during the summer of 1979 in which field plots oon s Ste. Rosalie clay soil and a Ste. Amable sandy loam soil were subjected to different levels of compaction by machinery, and subsequently treated by moldboard plowing and discing, chiselling and subsoiling by a winged tool. A silage corn crop was grown on all plots and measurements were made of soil bulk densities, penetration resistance of soils and plant yields. The results indicated that the compaction of the soil, if not subsequently loosened by a tillage operation, caused a marked reduction in plant yields. A nnarrow range of dry bulk density produced the optimum silage corn yields in the two experimental soils. The soil densities in this range were obtained by any of the three tillage treatments, as well as by the rototiller treatment, without machinery traffic.  相似文献   

16.
The point of departure of the present work may be either an interest in vehicle vibrations themselves, or in ground vibrations and terrain damage due to vehicles traveling off-road. The vibrations of a vehicle traversing dry, soft terrain, which is either rough or undulating, may be significantly modified by the dynamic interaction of the vehicle with the soil, particularly due to losses of energy by soil compaction and as elastic waves. The present work provides a prediction methodology for both vehicle and soil vibrations, accounting for the effects mentioned above. An expedient linear method is compared to a rheologically-based non-linear method. In the linear method, the soil compaction is incorporated as a loss factor in the dynamic stiffness of the otherwise elastic half-space; the imaginary part of that dynamic stiffness already includes the effects of wave damping. The non-linear model treats the compaction using a general rheological model for soils exhibiting both viscous and thixotropic effects, and requires iterative solution. A key feature of the latter model is the hypothesis that the stress distribution may be approximately regarded as quasi-static when calculating compaction losses; that approximation is expected to hold at low frequencies, since the P-wavelength in the soil is then much greater than the dimensions of the zone in which most compaction occurs. The methods predict that the soil compaction and excited ground vibrations have maxima at the vehicle bounce and hop resonances, and at high frequencies at which the Rayleigh wavelength approaches the order of the contact patch diameter. Moreover, sufficiently soft, compactable soils, but fully realizable in nature, control the vehicle response at the hop resonance, and possibly also at the bounce resonance.  相似文献   

17.
Tire/terrain interaction has been an important research topic in terramechanics. For off-road vehicle design, good tire mobility and little compaction on terrain are always strongly desired. These two issues were always investigated based on empirical approaches or testing methods. Finite element modeling of tire/terrain interaction seems a good approach, but the capability of the finite element has not well demonstrated. In this paper, the fundamental formulations on modeling soil compaction and tire mobility issues are further introduced. The Drucker-Prager/Cap model implemented in ABAQUS is used to model the soil compaction. A user subroutine for finite strain hyperelasticity model is developed to model nearly incompressible rubber material for tire. In order to predict transient spatial density, large deformation finite element formulation is used to capture the configuration change, which combines with soil elastoplastic model to calculate the transient spatial density due to tire compaction on terrain. Representative simulations are provided to demonstrate how the tire/terrain interaction model can be used to predict soil compaction and tire mobility in the field of terramechanics.  相似文献   

18.
目前报道的不少实验成果,在得出粉土热物性指标和某一因素的关系时,并未保持其他影响因素固定不变,因而只能说明粉土热物性指标随影响因素的定性变化趋势。要建立热物性指标与影响因素间的确定性关系和推算公式,需要更为严格的实验,即研究某一影响因素时保持其他因素不变。通过一系列实验,对粉土试样的热导率进行研究,在排除孔隙比、干密度、土样成分等影响因素的情况下,独立分析了粉土的热导率与含水量间的关系。实验结果表明粉土的热导率随含水量的增大而增大,其变化规律与砂土一致,都符合对数变化规律,且整个变化过程可分为两个阶段。同时还分析了粉土的内在传热机制,有效描述和解释粉土热导率随含水量的变化规律。分析结果表明用对数形式来描述粉土热导率与含水量之间的关系是正确的。    相似文献   

19.
The compaction of a soil is one of the important construction operations that influences the durability of soil structure. Therefore, the measurement of soil density, used to judge the degree of compaction, has to be performed exactly. Since a compaction of a thick finishing layer could be executed with the enlargement of compaction machinery and the improvement of productivity, new equipment which can measure the soil density in a deep stratum has to be developed. In this paper, we propose a method of accurately estimating compacted soil density based on the three dimensional stresses measured in the ground during compaction by a stress state transducer (SST). A tracked vehicle mounted with a vertical oscillator was used to compact a decomposed granite soil of 45 cm depth. A model experiment was executed at a frequency that was varied from 16 to 25 Hz, setting the load ratio of maximum oscillating force to the vehicle weight (4.9 kN) to be 1.2, 1.6 and 2.0. The three dimensional stresses in the ground were measured by use of the SST. Comparing the dry density converted from cone penetrometer test results and the dry density estimated from Baily’s formula, the compacted soil density at the lowest soil stratum could be estimated by measuring earth pressure using SST.  相似文献   

20.
Mathematical models to predict the mode and extent of deformation occurring below sinkage plates are presented in the first part of this paper which encompasses the theoretical approach to the subject. These models are based on previous work by Earl (Earl R. Assessment of the behaviour of field soils during compression. Journal of Agricultural Engineering Research 1997;68:147–57)who developed a procedure to predict the likely mode of deformation using confined compression tests carried out alongside plate sinkage tests. This work suggested that soil behaviour, during increasing compression under a sinkage plate, is governed by three processes; (i) compaction below the plate with constant lateral stress, (ii) compaction with increasing lateral stress, and (iii) displacement and compaction of soil laterally. The aim of this second part to the paper is to observe soil deformation processes occurring below a circular sinkage plate to examine (i) whether the three phases of deformation referred to above occur in practice, and (ii) the accuracy of the models for predicting the soil deformation processes that occur. Tests were carried out on sandy loam soil under controlled conditions in a soil bin. Observations of deformation processes, recorded using long-exposure photography, revealed that during the initial stages of sinkage (a few millimetres), the corresponding disturbance of soil below the plate extended disproportionately further and was cylindrical in form. As sinkage progressed, the deformation process went through a transitional stage before reaching the more widely recognised form of the development of an inverted cone of compacted soil directly below the plate which moved with the plate causing lateral soil movement and compaction. Predictions for a medium density sandy loam were found to be in broad agreement with soil behaviour under a semi-circular sinkage plate observed behind a sheet of tempered glass under controlled conditions in a soil tank.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号