首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three design techniques for stability analysis of longitudinally corrugated cylindrical shells are examined. The first two account for the true geometry of the shell and the third one replaces the corrugated shell with an equivalent orthotropic shell using reduction formulas. The exact formulations employ classical and Timoshenko-type theories. The techniques are analyzed by an example of sinusoidally corrugated shells. It is shown that the exact formulation permits finding practically important relations for corrugation parameters, which raises considerably the specific critical loads.  相似文献   

2.
A refined Timoshenko-type model based on the straight-line hypothesis is used to develop an approach to analyzing the stress state of longitudinally corrugated cylindrical shells with elliptic cross-section. The approach is to reduce the two-dimensional boundary-value problem that describes the stress–strain state of the shell to a one-dimensional one and to solve it with the stable numerical discrete-orthogonalization method. The solutions obtained using the straight-line hypothesis and the equations of three-dimensional elasticity are compared. The dependence of the stress–strain state of the shell on the number and amplitude of corrugations and the aspect ratio of the cross-section is analyzed  相似文献   

3.
A technique for stability analysis of cylindrical shells with a corrugated midsurface is proposed. The wave crests are directed along the generatrix. The relations of shell theory include terms of higher order of smallness than those in the Mushtari–Donnell–Vlasov theory. The problem is solved using a variational equation. The Lamé parameter and curvature radius are variable and approximated by a discrete Fourier transform. The critical load and buckling mode are determined in solving an infinite system of equations for the coefficients of expansion of the resolving functions into trigonometric series. The solution accuracy increases owing to the presence of an aggregate of independent subsystems. Singularities in the buckling modes of corrugated shells corresponding to the minimum critical loads are determined. The basic, practically important conclusion is that both isotropic and orthotropic shells with sinusoidal corrugation are efficient only when their length, which depends on the waveformation parameters and the geometric and mechanical characteristics, is small  相似文献   

4.
集中载荷作用下具有光滑中心波纹膜片的非线性分析   总被引:4,自引:0,他引:4  
袁鸿  张湘伟 《力学季刊》2003,24(1):124-128
波纹膜片是一种薄壳弹性体,由于它的参数很多,又相互制约,所以使得它的设计很复杂。在大多数位移式仪器仪表中,要求波纹膜片产生至少和膜片厚度是同样数量级的弹性位移。这就要求使用薄壳的几何非线性理论进行分析。大多数学者研究波纹膜片的弯曲问题,是采用扁壳理论讨论具有浅波纹的膜片。而工程实际中,经常遇到深波纹膜片,这就要求从一般壳体大挠度方程进行求解。本文采用轴对称旋转壳体的简化Re-issner方程。研究了在中心集中载荷作用下具有光滑中心波纹膜片的非线性弯曲问题。应用积分方程方法,可以获得膜片的特征关系(载荷-中心挠度关系)和应力分布。文末给出实例计算的数值结果。  相似文献   

5.
波纹壳是传感器弹性元件的一类重要形式,也是精密仪器仪表弹性元件中的一类重要形式。由于波纹壳形状复杂、参数众多、厚度薄,对其进行非线性分析非常重要同时也是十分困难的。本文考虑一种在传感器弹性元件中有重要应用价值的正弦波纹浅球壳体,将这种壳体视为结构上的圆柱正交异性扁球壳,根据Andryewa的思想,分别得到了正弦波纹壳径向、环向在拉伸、弯曲下的等价的四个各向异性参数;建立了正弦波纹扁球壳的非线性强迫振动微分方程;得到了正弦波纹扁球壳非线性强迫振动的共振周期解及幅频特性曲线。  相似文献   

6.
The nonstationary behavior of three-layer cylindrical shells under an axisymmetric loading is considered with the application of hypotheses to each layer. Independent postulations are proposed for the approximation of displacements and transverse strains across the thickness of each layer. Reissner's variational principle for dynamic processes is used to derive the motion equations. The problem of the dynamic deformation of three-layer cylindrical shells under a nonstationary loading is considered in the case where the ends of the shells are rigidly fixed. The values obtained were compared with those predicted from hypotheses relating to the whole packet of the structure (the Timoshenko-type theory of multilayered shells). S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 35, No. 8, pp. 3–9, August, 1999.  相似文献   

7.
A technique is developed for determining the thermoviscoelastoplastic geometrically nonlinear axisymmetric stress–strain state of laminar shells of revolution under loads that induce meridional stress and torsion. The technique is based on the hypotheses of rectilinear element for the whole stack of layers. The relations of the theory of deformations along paths of small curvature are used as equations of state. The solution is reduced to the numerical integration of a system of ordinary differential equations. The technique is tried out by a test example and illustrated by determining the geometrically nonlinear thermoviscoelastoplastic state of a corrugated shell  相似文献   

8.
Based on the nonlinear theory of shallow spherical thick shells and the damage mechanics, a set of nonlinear equations of motion for the laminated shallow spherical thick shells with damage subjected to a normal concentrated load on the top are established. According to Hertz law, the contact force acted upon the shells is determined due to the impact of a mass, and it is related to the mass and initial velocity of the striking object, the geometrical and physical character of the shell. By using the finite difference method and the time increment procedure, the nonlinear equations are resolved. In the numerical examples, the effects of the damage, the initial velocity, and mass of the striking object, the shells’ geometrical parameters on the dynamic responses and dynamic buckling of the laminated shallow spherical thick shells are discussed. Research of Y. Fu, Z. Gao and F. Zhu was supported by National Natural Science Foundation of China (No. 10572049).  相似文献   

9.
In this paper, the governing equations for non-linear free vibration of truncated, thin, laminated, orthotropic conical shells using the theory of large deformations with the Karman-Donnell-type of kinematic nonlinearity are derived. Applying superposition principle and Galerkin’s method, these equations are reduced to a time dependent non-linear differential equation. The frequency-amplitude relationship for the laminated orthotropic thin truncated conical shell is obtained using the method of weighted residuals. In the particular case, we can obtain the similar relationships for the single-layer and laminated orthotropic cylindrical shells, also. The influence played by geometrical parameters of the conical shell and physical parameters of the laminate (i.e. material properties, staking sequences and number of layers) on the non-linear vibration behavior of the conical shell is examined. It is noticed that the non-linear vibration of shells is highly dependent on laminate characteristics and, from these observations, it is concluded that specific configurations of laminates should be designed for each kind of application. Present results are compared with available data for special cases.  相似文献   

10.
基于非线性弹性理论,建立了含脱层正交铺设圆柱壳的后屈曲控制方程,应用Koiter初始后屈曲理论和小参数摄动法,导出了系统的一阶和二阶摄动控制方程,以及相应的边界条件、位移连续条件和力平衡条件,然后逐阶求解.算例中,讨论了不同脱层深度和长度对脱层复合材料圆柱壳屈曲和初始后屈曲特性的影响,并与已有文献进行了比较.  相似文献   

11.
A variant of the two-dimensional equations of the motion of a discretely stiffened cylindrical shell is considered within the framework of the elastic nonlinear Timoshenko-type theory of shells and rods. The initial system of equations of motion is derived based on the Hamilton-Ostrogradskii variation principle. A numerical algorithm for solution of such problems with allowance for discrete nonuniformities is constructed. Some aspects of equation approximation are studied. The effect of geometrically nonlinear factors on the stress-strain state of a structure is analyzed. The scientific results of the present work were obtained during implementation of Project No. 182 of the Ukrainian Scientific and Technological Center. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 4, pp. 120–124, April, 2000.  相似文献   

12.
The nonlinear analysis with an analytical approach on dynamic torsional buckling of stiffened functionally graded thin toroidal shell segments is investigated. The shell is reinforced by inside stiffeners and surrounded by elastic foundations in a thermal environment and under a time-dependent torsional load. The governing equations are derived based on the Donnell shell theory with the von K′arm′an geometrical nonlinearity,the Stein and McE lman assumption, the smeared stiffeners technique, and the Galerkin method. A deflection function with three terms is chosen. The thermal parameters of the uniform temperature rise and nonlinear temperature conduction law are found in an explicit form. A closed-form expression for determining the static critical torsional load is obtained. A critical dynamic torsional load is found by the fourth-order Runge-Kutta method and the Budiansky-Roth criterion. The effects of stiffeners, foundations, material,and dimensional parameters on dynamic responses of shells are considered.  相似文献   

13.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

14.
A heterogeneous mathematical model is formulated. It permits us to use simultaneously the equations of the theories of elasticity and Timoshenko-type shells to describe different fragments of a structure. This model can be written as a closed system of differential equations of different dimensions with boundary conditions on the domain boundary and conjugate conditions on the surfaces where fragments are mated. A variational problem is formulated. The existence and uniqueness of the solution are analyzed. Numerical results demonstrate the efficiency of the approach  相似文献   

15.
This paper presents an analytical approach to investigate the non-linear axisymmetric response of functionally graded shallow spherical shells subjected to uniform external pressure incorporating the effects of temperature. Material properties are assumed to be temperature-independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. Equilibrium and compatibility equations for shallow spherical shells are derived by using the classical shell theory and specialized for axisymmetric deformation with both geometrical non-linearity and initial geometrical imperfection are taken into consideration. One-term deflection mode is assumed and explicit expressions of buckling loads and load-deflection curves are determined due to Galerkin method. Stability analysis for a clamped spherical shell shows the effects of material and geometric parameters, edge restraint and temperature conditions, and imperfection on the behavior of the shells.  相似文献   

16.
本文由Sanders非线性平衡方程和Koiter小应变协调方程推导出细环壳的非线性微分方程和稳定方程。用伽辽金法求解了静水压或边界载荷作用下的半园环截面细环壳的稳定方程。对于不同的边界条件及一系列几何参数,计算得到了临界载荷及屈曲模态。  相似文献   

17.
The influence of internal pressure on the free vibration behavior of functionally graded (FG) truncated conical shells are investigated based on the first-order shear deformation theory (FSDT) of shells. The initial mechanical stresses are obtained by solving the static equilibrium equations. Using Hamilton’s principle and by including the influences of initial stresses, the free vibration equations of motion around this equilibrium state together with the related boundary conditions are derived. The material properties are assumed to be graded in the thickness direction. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to discretize the governing equations and the related boundary conditions. The convergence behavior of the method is numerically investigated and its accuracy is demonstrated by comparing the results in the limit cases with existing solutions in literature. Finally, the effects of internal pressure together with the material property graded index, the semi-vertex angle and the other geometrical parameters on the frequency parameters of the FG truncated conical shells subjected to different boundary conditions are studied.  相似文献   

18.
非牛顿流体经波纹管流动的阻力特性   总被引:3,自引:0,他引:3  
本文对Carreau流体经波纹管的蠕动流的阻力特性用差分方法作了数值求解。先施行坐标变换,提出一种保证周期性条件的混合迭代法,能较快得到问题的收敛解。流体的物质参数以及流动区域的几何参数对流动阻力特性的影响作了讨论,同时指出了直径均匀的毛管模型作为渗流模型的不足之处。  相似文献   

19.
The question of whether the nonlinear Timoshenko-type theory of shells can be applied to the study of the initial postcritical behavior of a rod under compression is considered. The Koiter asymptotic theory in the Budyanskii form is used. The exact solution of the problem is obtained and a formula for the coefficient of postcritical behavior allowing for the effect of lateral-shear strains is derived. It is shown that the expressions (specified to within cubic terms) for lateral-shear strains and curvature permit us to use the nonlinear theory of shells to analyze the initial supercritical behavior of rods  相似文献   

20.
The paper presents a technique to determine the axisymmetric geometrically nonlinear thermoviscoelastoplastic state of thin shells with damages. The technique is based on the geometrically nonlinear equations that incorporate transverse-shear strains. The equations of thermoelasticity that describe the deformation of the body’s element along paths of small curvature are used as equations of state. The equivalent stress in the kinetic equations of damage and creep is determined from a failure criterion that accounts for the stress mode. As an example, the geometrically nonlinear thermoviscoelastoplastic deformation of a corrugated shell is analyzed and the time to its failure is determined __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 49–60, February 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号