首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
无水钾镁矾类复盐(A+)2Cd2(SO4)3的热化学   总被引:7,自引:0,他引:7  
The standard molar formation enthalpies of (A+)2Cd2(SO4)3[A+ is NH+ 4 or K+] are determined from the enthalpies of dissolution (ΔsHm) of [(A+)2SO 4(s)+2CdSO4(s)] and (A+)2Cd2(SO4)3(s) in twice distilled water or 3 mol•L-1 HNO3 solvent respectively,at 298.2 K,as: ΔfHm [(NH4)2Cd2(SO4)3,s,298.2K]=-3031.74±0.08 kJ•mol-1 ΔfHm [K2Cd2(SO4)3,s,298.2K]=-3305.52±0.17 kJ•mol-1  相似文献   

2.
钾芒硝是一种成因复杂的复盐[1~ 3 ] ,并且由于钾芒硝K3 Na(SO4 ) 2 与硫酸钾石 [K3 Na(SO4 ) 2 或Na2 SO4 ·3K2 SO4 ]的化学组成相同 ,未能确定二者是否属于同一种复盐[4 ,5] 。我们合成了复盐K3 Na(SO4 )2[3 ] ,用溶解量热法测定了K3 Na(SO4 )2 和反应物 [Na2 SO4 (s) +K2 SO4 (s) ]的溶解焓 ,通过设计热化学循环计算出复盐的标准生成焓 ,为我们了解钾芒硝和硫酸钾石是否为同一复盐 ,并为进一步研究其成因和组成提供参考。1 实验部分1 1 试剂与仪器K2 SO4 (s)和Na2 SO4 (s)为A .R .…  相似文献   

3.
Hydrated potassium monoborate(KBO2·4/3H2O) was obtained from an aqueous solution in a mole ratio of K2O∶B2O3=2∶1 and characterized by powder X-ray diffraction(XRD), infrared spectroscopy(FT-IR) and Raman spectroscopy. The enthalpy of solution of hydrated potassium monoborate, KBO2·4/3H2O, in approximately 1mol·dm-3 aqueous hydrochloric acid was determined. Together with the previously determined enthalpies of so-lution of H3BO3 in approximately 1mol·dm-3 HCl(aq) ,and of KCl in aqueous(hydrochloric acid+boric acid), the standard molar enthalpy of formation of -(1411.11±0.84)kJ·mol-1 for KBO2·4/3H2O was obtained from the standard molar enthalpies of formation of KCl(s), H3BO3(s), and H2O(l). The standard molar entropy of formation of -422.94J·K-1·mol-1 and standard molar entropy of 163.47J·K-1·mol-1 for KBO2·4/3H2O were calculated from the thermodynamic relations. A group contribution method is applicable to KBO2·4/3H2O.  相似文献   

4.
5.
选择分析纯烟酸和无水醋酸钾为反应物, 利用室温固相合成方法, 合成了无水烟酸钾. 利用FTIR和X射线粉末衍射等方法表征了它的结构. 用精密自动绝热热量计测定了它在77~400 K温区的低温热容, 将该温区的摩尔热容实验值用最小二乘法拟合, 得到热容随温度变化的多项式方程. 用此方程进行数值积分, 得到此温区内每隔5 K的舒平热容值和相对于298.15 K时的各种热力学函数值. 在此基础上, 通过设计合理的热化学循环, 利用等温环境溶解-反应热量计分别测定固相反应的反应物和生成物在所选溶剂中的溶解焓, 从而得到该固相反应的反应焓为 (25.87±0.47) kJ•mol-1. 最后, 依据Hess定律计算出烟酸钾的标准摩尔生成焓为 =-(560.57±1.09) kJ•mol-1.  相似文献   

6.
选择分析纯烟酸和无水醋酸钠作为反应物, 用室温固相合成方法合成了无水烟酸钠. 利用FTIR和X射线粉末衍射等方法进行了表征, 利用化学分析和元素分析确定其组成为Na(C6H4NO2). 用精密自动绝热热量计测量其在78~400 K温度区间的低温热容. 研究结果表明, 该化合物在此温度区间无热异常现象发生. 用最小二乘法将实验摩尔热容对温度进行拟合, 得到热容随温度变化的多项式方程. 用此方程进行数值积分, 得到在此温度区间每隔5 K的舒平热容值和相对于298.15 K时的热力学函数值. 在此基础上, 通过设计合理的热化学循环, 选用1 mol/L NaOH溶液作为量热溶剂, 利用等温环境溶解-反应热量计分别测得固相反应的反应物和产物在所选溶剂中的溶解焓, 得到固相反应的反应焓. 最后, 计算出无水烟酸钠的标准摩尔生成焓为: ΔfHm0[Na(C6H4NO2), s]=-(548.96±1.11) kJ/mol.  相似文献   

7.
以高氯酸钐和缬氨酸为原料在蒸馏水中合成了一种稀土高氯酸盐-缬氨酸配合物[Sm2(L-α-Val)4(H2O)8](ClO4)6.利用TC/DTG、化学和元素分析、FTIR等技术表征了配合物的结构,确定其组成为:[Sm2(L-αVal)4(H2O)8](ClO4)6.用精密绝热量热仪测量了它在78~371 K 温区的热容,用最小二乘法将该温区的热容对温度进行拟合,得到了热容随温度变化的多项式方程.用此方程进行数值积分,得到每隔5 K的舒平热容值和相对于298.15 K的热力学函数值.根据TG/DTG结果,推测了该配合物的热分解机理.另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测量量热反应的反应物和产物在所选溶剂中的溶解焓,从而确定反应的反应焓为:△rHθm=(24.83:±0.85)kJ·mol-1.最后,利用反应的反应焓和其它反应物和产物已知的热力学数据计算出配合物的标准摩尔生成焓为:-(8010.01±3.90)kJ·mol-1.  相似文献   

8.
用分析纯苯甲酸和一水氢氧化锂作为反应物, 采用水热合成法制得苯甲酸锂. 利用X射线粉末衍射、FTIR、元素分析及化学分析等方法对样品进行组成和结构表征. 采用精密自动绝热热量计测量了其在80~400 K范围内的摩尔热容, 利用最小二乘法将此温区热容实验值对折合温度进行拟合, 得到热容随温度变化的多项式方程. 通过设计合理的热化学循环, 选用0.1 mol/L HCl溶液作为量热溶剂, 利用等温环境溶解-反应热量计分别测定合成反应的反应物和产物在所选溶剂中的溶解焓, 得到反应焓ΔrHm0=-(9.75±0.27) kJ/mol. 利用Hess定律计算出苯甲酸锂的标准摩尔生成焓ΔfHm0(C6H5COOLi, s)=-(307.82±0.57) kJ/mol.  相似文献   

9.
复盐K2Zn(IO3)4·2H2O的热化学研究   总被引:3,自引:0,他引:3  
The standard enthalpy of formation (ΔfH?m[K2Zn(IO3)4·2H2O,s,298.2K]=-2210.68 kJ·mol-1) of a double salt K2Zn(IO3)4·2H相似文献   

10.
合成了一种新型碱土金属硼酸盐SrB4O7·3.5H2O,并对它进行了化学分析、红外光谱(IR)、X射线衍射(XRD)及热分析(TC—DTA)等一系列物相鉴定与表征。通过设计热力学循环,利用微热量计测定了SrB4O7·3.5H2O溶解于约1mol·L^-1 HCl水溶液中的摩尔溶解焓,再结合H3BO,在HCl(aq)的摩尔溶解焓,Sr(OH)2·8H2O(s)溶解于[HCl(aq)+H3BO3(aq)]的摩尔溶解焓,以及H2O(1)、Sr(OH)2·8H2O(s)与H3BO3(s)的标准摩尔生成焓,得到了SrB4O7·3.5H2O的标准摩尔生成焓为-(4435.15±3.30)kJ·mol^-1。  相似文献   

11.
SrB_4O_7·3.5H_2O的合成、表征与热化学研究   总被引:1,自引:1,他引:0  
合成了一种新型碱土金属硼酸盐SrB4O7·3.5H2O,并对它进行了化学分析、红外光谱(IR)、X射线衍射(XRD)及热分析(TG-DTA)等一系列物相鉴定与表征.通过设计热力学循环,利用微热量计测定了SrB4O7·3.5H2O溶解于约1 mol·L-1HCl水溶液中的摩尔溶解焓,再结合H3BO3在 HCl(aq)的摩尔溶解焓,Sr(OH)2·8H2O(s)溶解于[HCl(aq)+H3BO3(aq)]的摩尔溶解焓,以及H2O(l)、Sr(OH)2·8H2O(s)与 H3BO3(s)的标准摩尔生成焓,得到了SrB4O7·3.5H2O的标准摩尔生成焓为–(4435.15± 3.30)kJ·mol–1.  相似文献   

12.
合成了一种稀土高氯酸盐-谷氨酸配合物. 经TG/DTG、化学和元素分析、FTIR及与相关文献对比, 确定其组成为[Pr2(L-α-Glu)2(ClO4)(H2O)7](ClO4)3•4H2O, 纯度为99.0%以上. 利用显微熔点仪分析发现其没有熔点. 在78~370 K温区, 用精密绝热量热仪测量其低温热容, 在285~306 K温区发现一明显吸热峰, 归结为固-固相变过程. 通过相变温区三次重复热容测量, 得到相变温度Ttr、相变焓ΔtrHm和相变熵ΔtrSm分别为(297.158±0.280) K, (12.338±0.016) kJ•mol-1和(41.520±0.156) J•K-1•mol-1. 用最小二乘法将非相变温区的热容对温度进行拟合, 得到了热容随温度变化的两个多项式方程. 用此方程进行数值积分, 得到每隔5 K的舒平热容值和相对于273.15 K的热力学函数值. 根据TG/DTG结果, 推测了该配合物的热分解机理. 依据Hess定律, 选择1 mol•dm-3盐酸为量热溶剂, 利用等温环境溶解-反应量热计, 测定了该配合物的标准摩尔生成焓为: ΔfHm0=-(7223.1±2.4) kJ•mol-1.  相似文献   

13.
邸友莹  谭志诚  李彦生 《化学学报》2006,64(13):1393-1401
合成了一种稀土高氯酸盐-谷氨酸配合物. 经TG/DTG、化学和元素分析、FTIR及与相关文献对比, 确定其组成为[Pr2(L-α-Glu)2(ClO4)(H2O)7](ClO4)3•4H2O, 纯度为99.0%以上. 利用显微熔点仪分析发现其没有熔点. 在78~370 K温区, 用精密绝热量热仪测量其低温热容, 在285~306 K温区发现一明显吸热峰, 归结为固-固相变过程. 通过相变温区三次重复热容测量, 得到相变温度Ttr、相变焓ΔtrHm和相变熵ΔtrSm分别为(297.158±0.280) K, (12.338±0.016) kJ•mol-1和(41.520±0.156) J•K-1•mol-1. 用最小二乘法将非相变温区的热容对温度进行拟合, 得到了热容随温度变化的两个多项式方程. 用此方程进行数值积分, 得到每隔5 K的舒平热容值和相对于273.15 K的热力学函数值. 根据TG/DTG结果, 推测了该配合物的热分解机理. 依据Hess定律, 选择1 mol•dm-3盐酸为量热溶剂, 利用等温环境溶解-反应量热计, 测定了该配合物的标准摩尔生成焓为: ΔfHm0=-(7223.1±2.4) kJ•mol-1.  相似文献   

14.
复盐K2Mg(IO3)4 2H2O的热力学性质   总被引:2,自引:0,他引:2  
由于碱金属碘酸盐晶体在电学性质的利用上有重要价值和发现碘酸盐晶体非线性性质[‘],七十年代以来,Vinogradov等对碘酸盐-碘酸-水系统发生了极大的兴趣,做了大量研究工作[’-‘],发现在碘酸盐.碘酸一水三元体系里有碘酸盐复盐K2M(IO3)4·2H2O(M=Mn2+、Co2+、N  相似文献   

15.
选择分析纯邻苯二甲酸和浓氨水为反应物,合成了邻苯二甲酸氢铵.利用元素分析、FTIR和X-射线粉末衍射技术表征了它的组成和结构.用精密自动绝热热量计测定了它在78~400 K温区的摩尔热容,将该温区的摩尔热容实验值用最小二乘法拟合,得到摩尔热容(Cp,m)随折合温度(X)变化的多项式方程,利用此方程计算出该温区内每隔5 K的舒平热容值和相对于298.15K的各种热力学函数值.另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测定所设计反应的反应物和产物在所选溶剂中的溶解焓,得到该反应的反应焓为△rHθm=(1.787±0.514)kJ·mol-1.最后,利用此反应焓和反应中其他物质的热力学数据计算出邻苯二甲酸氢铵的标准摩尔生成焓为:△fHθm[NH4(C8H5O4),s]=-(912.953±0.628)kJ·mol-1.  相似文献   

16.
以高氯酸钐和缬氨酸为原料在蒸馏水中合成了一种稀土高氯酸盐-缬氨酸配合物[Sm2(L-α-Val)4(H2O)8](ClO4)6。利用TG/DTG、化学和元素分析、FTIR等技术表征了配合物的结构,确定其组成为:[Sm2(L-α-Val)4(H2O)8](ClO4)6。用精密绝热量热仪测量了它在78~371 K温区的热容,用最小二乘法将该温区的热容对温度进行拟合,得到了热容随温度变化的多项式方程。用此方程进行数值积分,得到每隔5 K的舒平热容值和相对于298.15 K的热力学函数值。根据TG/DTG结果,推测了该配合物的热分解机理。另外,依据Hess定律,通过设计合理的热化学循环,利用等温环境溶解-反应热量计分别测量量热反应的反应物和产物在所选溶剂中的溶解焓,从而确定反应的反应焓为:ΔrHm?=(24.83±0.85) kJ·mol-1。最后,利用反应的反应焓和其它反应物和产物已知的热力学数据计算出配合物的标准摩尔生成焓为:-(8 010.01± 3.90) kJ·mol-1。  相似文献   

17.
氨基酸与金属微量元素形成的配合物广泛存在于动植物体中并参与许多生命过程。我们在前文[1 ,2 ] 基础上制备了Na2 [Zn(Cys) 2 ]·5H2 O ,通在2 98 2K用具有恒定温度环境的反应热量计[3] 测定了反应物和生成物在4mol·L- 1 HCl溶液中的溶解焓,过热化学循环计算出配合物的标准生成焓△fH m(Na[Zn(Cys) 2 ]·5H2 O ,s) =- 2 82 8 32 3kJ·mol 1 。1 实验部分1 .1 试剂与仪器L 半胱氨酸(L cys)为生化试剂,纯度>99 0 % ,ZnSO4·7H2 O、C2 H5OH、Na2 SO4、NaOH为分析纯试剂,实验用水均为二次蒸馏水。UV 2 5 0型紫外可见光谱仪(…  相似文献   

18.
无水烟酸锂的合成、结构表征及热化学性质   总被引:1,自引:0,他引:1  
选择分析纯烟酸和一水氢氧化锂为反应物, 利用水热合成方法合成了无水烟酸锂. 利用FTIR和X射线粉末衍射等方法表征了它的结构. 用精密自动绝热热量计测定了它在78~400 K温区的低温热容, 将该温区的摩尔热容实验值用最小二乘法拟合, 得到热容随温度变化的多项式方程. 用此方程进行数值积分, 得到温区内每隔5 K的舒平热容值和相对于298.15 K时的各种热力学函数值. 在此基础上, 通过设计合理的热化学循环, 利用等温环境溶解-反应热量计分别测定该反应的反应物和生成物在所选溶剂中的溶解焓, 从而得到此反应的反应焓为: =-(20.21±0.41) kJ• mol-1. 最后, 依据Hess定律计算出无水烟酸锂的标准摩尔生成焓为: [Li(C6H4NO2), s]=-(278.29±1.01) kJ•mol-1.  相似文献   

19.
利用精密自动绝热热量计测定了Nd(Gly)2Cl3·3H2O在80-357K和Pr(Ala)3Cl3·3H2O在80-374K温区的热容. 根据两个化合物的热容计算出了相对于参考温度298.15K的热力学函数(HT?H298.15)和(ST?S298.15). 根据热重(TG)分析结果, 提出了这两个稀土化合物可能的热分解机理. 利用溶解-反应恒温热量计测定相关化合物的溶解焓并设计盖斯热化学循环, 计算出了两个化合物的标准摩尔生成焓.  相似文献   

20.
利用精密自动绝热热量计直接测定了配合物Zn(Met)SO4·H2O(s)在78~370K温区的摩尔热容.通过热容曲线的解析得到该配合物的起始脱水温度为T0=329.50K.将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并且在此基础上计算出了它的舒平热容值和各种热力学函数值.依据Hess定律,通过设计热化学循环,选择体积为100cm3、浓度为2mol·L-1的盐酸作为量热溶剂,利用等温环境溶解-反应热量计,测定和推算出该配合物的标准摩尔生成焓为?fHms=-(2069.30±0.74)kJ·mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号