首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of a bis(amino)amide nickel pincer complex bearing a perfluoroethyl ligand was effected by reaction of the corresponding nickel chloride complex with cesium fluoride and trimethyl(pentafluoroethyl)silane. Electrochemical experiments revealed that the oxidation of the LNi-C(2)F(5) complex occurs at the same potential as the LNi-Cl derivative, but reduction of the LNi-C(2)F(5) complex occurs at slightly more positive potentials. The similarity of the electrochemical data was corroborated by density functional theory (DFT), which predicts that the energies of the HOMOs (HOMO = highest occupied molecular orbital) and LUMOs (LUMO = lowest unoccupied molecular orbital) of the LNi-C(2)F(5) and LNi-Cl complexes are equal in magnitude. DFT also revealed that the HOMOs of the bis(amino)amide nickel pincer complexes are primarily ligand in character, while the LUMOs are predominantly metal in character, supporting redox-activity with this ligand.  相似文献   

2.
Oxidation of secondary alcohols to ketones was accomplished by an indirect electrochemical method utilizing thioanisole as a catalytic electron carrier.  相似文献   

3.
The reaction in toluene between 2-iodo-1,3-bis(4′,4′-dimethyl-2′-oxazolinyl)benzene and Ni(COD)2 gave [2,6-bis(4′,4′-dimethyl-2′-oxazolinyl)phenyl-N,C1,N′]iodonickle(II) isolated in 69% yield. The structure of this novel nickel bisoxazoline pincer complex was confirmed by a X-ray crystal structure analysis.  相似文献   

4.
The reaction of NiCl2 with 1,3‐bis[(diphenylphosphanyl)methyl]hexahydropyrimidine in the presence of 2,6‐dimethylphenyl isocyanide and KPF6 afforded a new pentacoordinated PCP pincer NiII complex, namely {1,3‐bis[(diphenylphosphanyl)methyl]hexahydropyrimidin‐2‐yl‐κN2}(2,6‐dimethylphenyl isocyanide‐κC)nickel(II) hexafluoridophosphate 0.70‐hydrate, [Ni(C9H9N)(C30H30ClN2P2)]PF6·0.7H2O or [NiCl{C(NCH2PPh2)2(CH2)3‐κ3P,C,P′}(Xylyl‐NC)]PF6·0.7H2O, in very good yield. Its X‐ray structure showed a distorted square‐pyramidal geometry and the compound does not undergo dissociation in solution, as shown by variable‐temperature NMR and UV–Vis studies. Density functional theory (DFT) calculations provided an insight into the bonding; the nickel dsp2‐hybridized orbitals form the basal plane and the nearly pure p orbital forms the axial bond. This is consistent with the NBO (natural bond orbital) analysis of analogous nickel(II) complexes.  相似文献   

5.
The EPR spectrum of the Ni(III)EDTA complex is reported. It is concluded that the complex has a flattened tetragonal distorted octahedral structure with a dxy2 dxz2 dyz2 dx2-y2 electronic configuration.  相似文献   

6.
7.
Well-defined dimeric or polymeric Pd(0) complexes [Pd(μ-(iPr)PCHP)](n) (n = 2 or ∞) containing the bridging ligand α,α'-bis(diisopropylphosphino)-m-xylene ((iPr)PCHP) are produced under mild conditions when the cyclometallated PCP pincer complex ((iPr)PCP)Pd-OH reacts with methanol or isopropanol.  相似文献   

8.
We have investigated detection of the anion radical and the divalent anion of tetracyanoquinodimethane (TCNQ) by acetonitrile-CE under anaerobic conditions. With electrolysis at a potential of 0.0 V (vs. Ag/AgCl), an acetonitrile solution of TCNQ turned green, characteristic of the TCNQ anion radical (TCNQ-). Only one peak of the anionic compound was observed in CE of the electrolysis solution and it should be that of TCNQ-. Then, the electrolysis potential was shifted to -0.8 V expected to be sufficient potential for the further reduction of TCNQ-, and the solution turned almost colourless. In CE analysis of the latter solution, another anionic component possessing a larger electrophoretic mobility than that of TCNQ- was detected, and it was decomposed immediately under aerobic conditions. This product was strongly suggested to be the divalent anion of TCNQ, and the present method would contribute notably to detection of the unstable species.  相似文献   

9.
The crystal structure of an unusual dimeric Ni(II) complex with 3-imidazoline nitroxide LH=C9H14N2O2 of the formula Ni2(LH)4 has been determined. The structure is molecular, space group P21/c, with a=12.150(3) Å, b=11.229(3) Å, c=15.780(4) Å, =101.59(3)o, and d calc =1.54 g/cm3, for Z=2; V=2109(1) Å3, R=0.059. In the centrosymmetric dimer, the Ni...Ni distance is 3.254(2) Å; the coordination polyhedron of Ni is a square pyramid (the coordination number is 5) formed by the donor O and N atoms of LH ligands acting as the bidentate-cyclic and bidentate bridged-cyclic structures. The Ni–O and Ni–N distances are 1.989(7) and 2.032(8) Å, respectively (for the atoms forming the pyramid base), and 2.000(8) Å to the apical N atom. The Ni atom is displaced from the base to the apex of the pyramid by 0.35 Å. The interatomic distances and the bond angles in the ligands agree with those for the previously studied M(LR)2 complexes. The distances between the Ni(II) ions and the O O atoms inside the Ni(LH)2 fragments are 5.39(1) and 5.45(1) Å, the intermolecular Ni...O distances exceed 6 Å, and the O...O distances are as long as 4.73(1) Å.Institute of Inorgamic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Stukturnoi Khimii, Vol. 34, No. 3, pp. 80–85, May–June 1993.Translated by T. Yudanova  相似文献   

10.
The generation of Ni(PPh3)4 by electrochemical reduction was carried out in a divided cell containing NiCl2(PPh3)4, PPh3 and n-Bu4NBr in DMF with a lead plate as cathode and a platinum plate as anode under the stream of argon at 60°. Using this Ni(PPh3)4, biphenyls and the heterocyclic compounds were synthesized in fairly good yields.  相似文献   

11.
The oxidation of 4,4′-dihydroxyazobenzene with the diphosphate complex of trivalent manganese was studied. The reaction stoichiometry was found and a procedure for a direct potentiometric titration of the test substance has been proposed.  相似文献   

12.
A thioamide-based pincer Pd complex, [2,6-bis(benzylaminothiocarbonyl-κS)phenyl-κC1]chloropalladium(II), was crystallized from different solvents. The structure of the complex in the solid state depends on hydrogen bonding interactions of cocrystallized solvent molecules with the metal complex in the crystal. The arrangement affects the intensity of the photoluminescence from the crystals. Strong emission was observed from the crystal having a densely packed arrangement of the complex, whereas the solutions and powders of the complex did not exhibit emission.  相似文献   

13.
Mazo  G. N.  Shlyakhtin  O. A.  Loktev  A. S.  Dedov  A. G. 《Russian Chemical Bulletin》2019,68(11):1949-1953
Russian Chemical Bulletin - The results of the last 20 year research on the development of rare earth cobaltate- and nickelate-based catalysts of the partial oxidation of methane (POM) are...  相似文献   

14.
Novel layer-rolled nanotubes of a nickel complex have been successfully synthesized by a simple wet chemical method. The nanotubes are assembled by rolling the (111) sheets of [Ni(NH3)6]Cl2 with the assistance of a polymer. The remarkable uniformity and high yields of the nickel complex nanotubes point to future applications in various fields of nanotechnology.  相似文献   

15.
The kinetics of the oxidation of formate, oxalate, and malonate by |NiIII(L1)|2+ (where HL1 = 15-amino-3-methyl-4,7,10,13-tetraazapentadec-3-en-2-one oxime) were carried out over the regions pH 3.0–5.75, 2.80–5.50, and 2.50–7.58, respectively, at constant ionic strength and temperature 40°C. All the reactions are overall second-order with first-order on both the oxidant and reductant. A general rate law is given as - d/dt|NiIII(L1)2+| = kobs|NiIII(L1)2+| = (kd + nks |R|)|NiIII(L1)2+|, where kd is the auto-decomposition rate constant of the complex, ks is the electron transfer rate constant, n is the stoichiometric factor, and R is either formate, oxalate, or malonate. The reactivity of all the reacting species of the reductants in solution were evaluated choosing suitable pH regions. The reactivity orders are: kHCOOH > k; k > k > k, and k > k < k for the oxidation of formate, oxalate, and malonate, respectively, and these trends were explained considering the effect of hydrogen bonded adduct formation and thermodynamic potential. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 225–230, 1997.  相似文献   

16.
Square pyramidal o-semiquinonic nickel complexes with 2,6-bis(diphenylphosphinomethyl)phenyl have a flexible coordination sphere and exist in solution as the mixture of tautomers rapidly, according to EPR time scale, interconverting at room temperature.  相似文献   

17.
In an improved procedure, the complex {2,6-bis[(diphenylphosphino)methyl]benzene}chloropalladium(II) (1) was synthesised as its THF adduct and the structure was determined by X-ray crystallography. The catalytic properties of the derivative {2,6-bis[(diphenylphosphino)methyl]benzene}(trifluoroacetato)palladium(II) (2) was investigated in the Stille reaction. Complex 2 proves to be an excellent catalyst for the C-C cross-coupling between trimethyl phenyl stannane and aryl bromides using a very low catalyst loading (0.1-0.0001%), giving high turnover numbers (TONs) up to 6.9 x 10(5). A kinetic investigation of the catalytic reaction suggests a heterogeneous colloidal palladium catalyst formed from the PCP Pd(II) pre-catalyst.  相似文献   

18.
Electron transfer reaction between vitamin A (1) and tris(p-bromophenyl)aminium hexachloroautimonate (2) in dichloromethane (DCM) has been investigated by means of UV-VIS absorption and ESR spectroscopy. The title radical cation formed in the reaction was characterized by a new absorption band around 600 nm and a singlet unresolved ESR spectrum with g factor of 2.0038-2.0039 and line width of 20 G. Further studies indicated that ESR pattern and parameters of the radical cation generated by 7-irradiation of 1 in CFCl3 matrix at 77 K are consistent with that resulted in the chemical oxidation in DCM at ambient temperature.  相似文献   

19.
Kinetics and selectivity of the aniline oxidation on a boron-doped diamond electrode and lead dioxide anode (Pb/PbO2) in an acid electrolyte were studied under various generation conditions of active oxygen species. The resulting kinetic dependences can be described by a pseudo-first-order equation. The apparent rate constants of the process were determined for two electrolysis modes: direct anodic oxidation and oxidation with addition of hydrogen peroxide. UV spectroscopy was used to determine that the aniline destruction process occurs via formation of a number of intermediate products (benzoquinone, carboxylic acids). It was shown that the aniline destruction process can occur with a rather high efficiency (~80–90%) on the electrode types under study.  相似文献   

20.
An efficient and simple method of modification of "inverted" porphyrin is provided by reactions of 5,10,15,20-tetraaryl-2-aza-21-carbaporphyrinatonickel(II) 2 with dihalogenalkanes under basic conditions. The substituents are bound to the internal carbon or external nitrogen of the inverted pyrrole depending on dihalogenalkane and basic catalyst. The monomeric 2- or 21-ethoxymethyl-substituted species are formed in the reaction of 2 with dihalomethanes and sodium ethoxide or ethanol in the presence of K(2)CO(3). A novel, dimeric 21,21'-ethylene-linked derivative 11 is obtained from 2 and ethylene bromide in dichloromethane in the presence of potassium carbonate end ethanol, while application of potassium tert-butoxide promotes formation of N-bromoethyl-substituted monomer 12. Reaction of 2 with propylene bromide in the presence of proton scavenger efficiently leads to the 21-allyl-substituted monomer 14 that is a product of the HBr elimination from a transient 21-bromopropyl-substituted species. The new compounds have been identified and characterized by means of mass spectrometry and optical and NMR spectroscopies. A single-crystal X-ray analysis performed for 12 allows discussion of structural parameters concerning the macrocycle and coordination core. Formation of deprotonated species [2](-), which is proposed as a key intermediate in the alkylation reaction, has been observed spectroscopically. Chirality of the N-substituted derivatives induced by protonation of the internal carbon is observed by NMR at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号