首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The oxygen ion conductivity of YSZ (ZrO(2) + 9.5 mol% Y(2)O(3))/Y(2)O(3) multilayer systems is measured parallel to the interfaces as a function of temperature between 350 and 700 degrees C. The multilayer samples are prepared by pulsed laser deposition (PLD). The film thicknesses, the crystallinity, the texture and the microstructure are investigated by SEM, XRD, HRTEM and SAED. To separate the interface contribution of the total conductivity from the bulk contribution the thickness of the YSZ and Y(2)O(3) layers is varied systematically. The total conductivity of the YSZ films increases when their thickness is decreased from 0.53 microm to 24 nm. It depends linearly on the reciprocal thickness of the individual layers, thus on the number of YSZ/Y(2)O(3) interfaces. This behaviour results from the parallel connection between individual conduction paths in the bulk and the interfacial regions. The activation energy for the ionic conductivity decreases from 1.13 to 0.99 kJ mol(-1) by decreasing the thicknesses of the individual YSZ layers. HRTEM studies show that the YSZ/Y(2)O(3) interfaces are semicoherent. The correlation between interface structure and ionic conduction is discussed.  相似文献   

2.
A current sensing atomic force microscope (CS-AFM) was used to probe the conducting homogeneity and band structures of fully doped polyaniline (PANI) films prepared from in situ chemical polymerization/deposition of aniline on indium tin oxide in various inorganic acids. The charge transport properties of PANI films depend on the film thickness as well as polymerization medium. Fluctuations in conductivity are observed on all acid-doped PANI films and the conducting homogeneity was dependent on the film thickness: the conductivity of thick film is more uniform. The current-voltage (I-V) characteristics of all thick (>200 nm) films displayed a metal-like behavior and conductivity as high as 40 S/cm was detected in high conducting regions of film thicker than 400 nm. Whereas thin (<120 nm) films revealed insulating, semiconducting, and semimetal conducting, wide distribution in conductivity and interband distances (estimated from the I-V ordI/dV-V curves) was found. The interband distances is 0-1.35, 0-1.0, and 0-0.78 eV for thin PANI film prepared from HCl(aq), HClO(4)(aq), and H2SO4(aq), respectively. PANI film (260 nm) prepared from H2SO4(aq) revealed fiberlike morphology, and compared to PANI films prepared from HCl(aq) and HClO4(aq) with similar thickness, it has higher average nanoscale conductivity but lower bulk conductivity. This result could be direct evidence which supports that the bulk conductivity of PANI depended on the carriers hopping between the conducting domains.  相似文献   

3.
Ni thin films with different thicknesses were deposited on pre‐treated polyimide substrates by ion beam‐assisted deposition. Dependence of structural, mechanical and electrical properties of the Ni films on their thickness was investigated. The results showed a clear correlation between film properties and film thickness. The inter‐diffusion at the interface regions of the films with different deposition time were demonstrated by transmission electron microscopy and X‐ray photoelectron spectroscopy. With increasing film thickness, surface roughness of the Ni films firstly decreased and then increased, while the grain size gradually increased. Residual stress of the Ni thin films decreased with increasing Ni film thickness up to 202 nm and then slightly increased as the film thickness further increased. Resistivity decreased, and temperature coefficient of resistivity (TCR) increased with increasing film thickness due to the enhancement of crystallization degree and the increase in grain size. The decrease in surface roughness and residual stress also contributed to the decrease of resistivity and the increase of TCR of the films. An optimal film thickness is suggested, which yielded a relatively high TCR value and low levels of both surface roughness and residual stress. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
PCVD法制备ZrO~2和YSZ薄膜   总被引:7,自引:0,他引:7  
以金属β-二酮类有机螯合物Zr(DPM)~4和Y(DPM)~3为挥发性源物质, 采用微波等离子体化学气相淀积法于较低的温度下(420~560℃)成功地在多孔α-Al~2O~3陶瓷,非晶玻璃等衬底上制备出致密的ZrO~2和YSZ薄膜材料.XRD分析结果表明,纯ZrO~2薄膜中除了单斜相外还存在着亚稳态的四方相.当掺入的Y~2O~3 摩尔百分含量大于或等于7%时,ZrO~2完全被稳定成立方相.SEM观察表明, 在等离子体内的不同区域中生成的薄膜形貌有所不同.XPS检测了YSZ薄膜中Zr3d~5~/~2和Zr3d~3~/~2 的电子结合能,发现较ZrO~2的标准值低0.7eV.由TEM观察和由XRD衍射峰半宽度计算, 所制备的ZrO~2和YSZ薄膜中微晶粒径在10nm左右  相似文献   

5.
To distinguish thin deposited film characteristics clearly from the influence of substrate morphological properties, the growth mechanism and the macroscale and nanoscale properties of nanoporous SiO(2) films deposited on nonporous silica (SiO(2)) substrates from chemical precursors Si(OH)(4) and TEOS (tetraethoxysilane) via low-pressure chemical vapor deposition are the primary targets of this study. This work employs a kinetic Monte Carlo (KMC) simulation method coupled to the Metropolis Monte Carlo method to relax the strained silica structure. The influence of the deposition temperature (473, 673, and 873 K) on the properties of the SiO(x) layers is addressed via analysis of the film growth rates, density profiles of the deposited thin films, pore size distributions, carbon depth profiles (with respect to TEOS), and voidage analysis for layers of different thicknesses (8-18 nm). A comparison of simulation with experimental results is also carried out.  相似文献   

6.
Ink‐jet printing (IJP) represents a highly promising liquid processed polymer deposition method for the film preparation of functional polymers in photo‐electronic devices. In this report, the results on the IJP of a fluorene‐based electroluminescent polymer, poly(9,9‐dihexylfluorene‐alt‐2,5‐dioctyloxybenzene) (PF6OC8), from a piezoelectric droplet generator are presented. The polymer film thickness has been found to show an approximate linear relation with the number of droplets per unit area; it is thus convenient to control the film thickness by the space of printed dots in IJP process. In comparison, spin coating approach is also used to prepare polymer films with different thicknesses by varying solution concentration and spinning speed. However, it is found that spin coating is difficult to control the film thickness quantitatively. The influence of film thickness on the photoluminescence (PL) properties of PF6OC8 films prepared by IJP and spin coating is comparatively investigated. For both ink‐jet printed and spin coated films, the intensity of PL spectra first increases and then decreases with increase in the film thickness, probably due to the exciton quenching in thicker films. When the polymer film thickness is at nanoscale, the major peak in the PL spectrum is the 0–0 vibronic emission at about 420 nm, and with increase in the film thickness, the 0–1 vibronic peak at about 440 nm becomes dominant. The red‐shifted PL spectra with increase in film thickness show the change from the 2D exciton state to the 3D one. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Nanoscale properties of thin films of conducting polymer polybithiophene (PBT) deposited under potentiostatic and potentiodynamic conditions were compared using ex-situ atomic force microscopy (AFM) and its extension called phase imaging (PI-AFM). While the morphologies of the films prepared using the two techniques were quite similar, the phase contrast measurements revealed a profound difference in the mechanisms of potentiostatic and potentiodynamic electropolymerization, as well as in the nanoscale crystallinity and grain structure of the resulting polymer films. The overall crystallinity and degree of order were always higher for films deposited at constant potential. The differences were especially pronounced at the early deposition stages (film thicknesses of ca. 10 nm).  相似文献   

8.
Metal−hydrogen (M−H) systems offer grand opportunities for studies on fundamental aspects of thermodynamics and kinetics. When the system size is reduced to the nanoscale, microstructural defects as well as mechanical stress affect the systems’ properties. This is contemplated for the model system of epitaxial niobium−hydrogen (Nb−H) thin films. Hydrogen absorption in metals commonly leads to lattice expansion which is hindered when the metal adheres to a flat rigid substrate. Consequently, high mechanical stress of about −10 GPa for 1 H/Nb are predicted, in theory. However, metals cannot yield such high stresses and respond with plastic deformation, commonly limiting measured stresses to −2 to −3 GPa for 100 nm Nb−H films. It will be shown that the coherency state changes with film thickness reduction, shifting the onset of plastic deformation to larger hydrogen concentrations. Below critical film thicknesses, plastic deformation is fully absent. The system then behaves purely elastic and ultra-high stress of about −10 (±2) GPa can be obtained. Arising stress controls the phase stability of M−H systems, and the coherency state strongly affects the nucleation and growth dynamics of the phase transition. In case of Nb−H thin films of less than 8 nm thickness the common phase transformation from the α-phase solid solution to the hydride phase is completely suppressed at 300 K. Related effects can be utilised to optimise metal−hydrides used in applications.  相似文献   

9.
A study is presented of the basic physicochemical properties of vacuum deposited silver/silver iodide film electrodes. X-ray analysis and electron microscopy yield information on the crystal structure and morphology of these films. The AgI was predominantly present in the γ modification. On the AgI surface irregularities are observed with diameters of 100 nm and lower. Aged surfaces show smaller irregularities than non-aged surfaces. The total roughness factor is estimated at 1.5 with an uncertainty of at least 10%. Methods are presented to determine the average film thickness and the conductivity of the film. The films used have a thickness of about 350 nm. The specific conductivity of the AgI film is approximately 10?4 Ω?1 cm?1.  相似文献   

10.
The process of micro- and nanolayer coextrusion of polymeric systems with good layer uniformity is described. Coextrusion through a series of layer multiplying die elements has enabled the production of films containing tens to thousands of layers with individual layer thicknesses from the micro- to the nanoscale. Improvements in layer uniformity are discussed through optimization of layer multiplier die design, selection of viscosity matched polymer systems, and incorporation of surface layer capabilities. Design of ‘uneven’ split layer multiplication dies has enabled the coextrusion of layered films with a wide variety of layer thickness distributions having up to a 10× difference in the individual film layer thicknesses. Coextrusion of layered polymer films with individual layer thicknesses down to the nanoscale has resulted in the production of novel systems with improved properties. Nanolayered polymer films were utilized to develop an all-plastic polymer laser, to fabricate gradient refractive index lenses, and to investigate gas barrier enhancement of crystalline polymer nanolayers confined to induce a high aspect ratio, in-plane, single-crystal-like lamellar structure.  相似文献   

11.
掺杂Sb对纳米TiO2薄膜的超亲水性和微结构的影响   总被引:1,自引:0,他引:1  
用溶胶-凝胶法将纳米TiO2:Sb薄膜沉积在玻璃基板上.研究了掺杂浓度对薄膜的光致超亲水性、薄膜结构和晶相转变的影响.结果表明,纯TiO2薄膜中, TiO2不仅以无定型态存在,而且还以板钛矿和锐钛矿的形式存在.掺杂Sb提高了TiO2由无定型向板钛矿和锐钛矿转变的速率.掺入适量的Sb后, TiO2薄膜表现出更好的光致超亲水性.由XRD谱可算出薄膜的晶粒大小为13.3~20.0 nm.  相似文献   

12.
TiO2光催化薄膜在陶瓷器具上抗菌效果的研究   总被引:31,自引:0,他引:31  
抗菌薄膜;TiO2光催化薄膜在陶瓷器具上抗菌效果的研究  相似文献   

13.
Layer-by-layer (LbL) assemblies have attracted much attention for their functional versatility and ease of fabrication. However, characterizing their thermal properties in relation to the film thickness has remained a challenging topic. We have investigated the role of film thickness on the glass transition temperature (T(g)) and coeffecient of thermal expansion for poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) and PEO/poly(methacrylic acid) (PEO/PMAA) hydrogen-bonded LbL assemblies in both bulk and ultrathin films using modulated differential scanning calorimetry (modulated DSC) and temperature-controlled ellipsometry. In PEO/PAA LbL films, a single, well-defined T(g) was observed regardless of film thickness. The T(g) increased by 9 °C relative to the bulk T(g) as film thickness decreased to 30 nm because of interactions between the film and its substrate. In contrast, PEO/PMAA LbL films show a single glass transition only after a thermal cross-linking step, which results in anhydride bonds between PMAA groups. The T(g), within error, was unaffected by film thickness, but PEO/PMAA LbL films of thicknesses below ~2.7 μm exhibited a small amount of PEO crystallization and phase separation for the thermally cross-linked films. The coefficients of thermal expansion of both types of film increased with decreasing film thickness.  相似文献   

14.
通过溶液铸膜方法,用匀胶机(spin-coater)在铝箔基板上制备出一系列具有不同厚度的结晶聚合物聚羟基丁酸酯(PHB)和聚ε-己内酯(PCL)超薄膜.经退火处理后,用差热扫描量热仪(DSC)测试了薄膜厚度对其结晶熔点Tm和结晶温度Tc的影响.结果表明,结晶熔点Tm随超薄膜厚度的减小逐渐减小;在减至一定的厚度时,熔点有突升,至极大值后,随膜厚继续减小熔点又会骤降.而结晶温度Tc则一直随膜厚的减小而逐渐降低.可以认为,结晶聚合物的分子在基板受限作用下,主要是熔融熵的变化导致了熔点的上述变化,而受限条件下的扩散控制结晶使结晶温度降低.  相似文献   

15.
The injection of pure spin current into the non-magnetic layer plays a crucial role in transmitting, processing, and storing data information in the realm of spintronics. To understand broadband molecular spintronics, pyrene oligomer film (≈20 nm thickness) was prepared using an electrochemical method forming indium tin oxide (ITO) electrode/pyrene covalent interfaces. Permalloy (Ni80Fe20) films with different nanoscale thicknesses were used as top contact over ITO/pyrene layers to estimate the spin pumping efficiency across the interfaces using broadband ferromagnetic resonance spectra. The spintronic devices are composed of permalloy/pyrene/ITO orthogonal configuration, showing remarkable spin pumping from permalloy to pyrene film. The large spin pumping is evident from the linewidth broadening of 5.4 mT at 9 GHz, which is direct proof of spin angular momentum transfer across the interface. A striking observation is made with the high spin-mixing conductance of ≈1.02×1018 m−2, a value comparable to the conventional heavy metals. Large spin angular moment transfer was observed at the permalloy-pyrene interfaces, especially at the lower thickness of permalloy, indicating a strong spinterface effect. Pure spin current injection from ferromagnetic into electrochemically grown pyrene films ensures efficient broadband spin transport, which opens a new area in molecular broadband spintronics.  相似文献   

16.
Two optically based, molecular probe techniques are employed to study relaxation and small-molecule translational diffusion in thin and ultrathin (thicknesses < ∼200 nm) polymer films. Second harmonic generation (SHG) is used to study the reorientational dynamics of a nonlinear optical chromophore, Disperse Red 1 (DR1) (previously shown to be an effective probe of α-relaxation dynamics) either covalently attached or freely doped in polymer films. Our studies on films ranging in thickness from 7 nm to 1 μm show little change in Tg with film thickness; however, a substantial broadening of the relaxation distribution is observed as film thickness decreases below approximately 150 nm. Experimental guidelines are given for using fluorescence nonradiative energy transfer (NRET) to study translational diffusion in ultrathin polymer films. Appropriate choice of a fluorescence donor species is important along with ensuring that diffusion is slow enough to be measured appropriately. Initial results on the diffusion of a small-molecule probe, lophine, in poly(isobutyl methacrylate) indicates that there is little change in probe diffusion coefficients in films as thin as 90 nm as compared to bulk films. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2795–2802, 1997  相似文献   

17.
采用Nd:YAG固体激光器在SrTiO3(STO)衬底上成功制备了具有c轴取向的过掺杂La1.8Sr0.2CuO4和欠掺杂La1.9Sr0.1CuO4超导薄膜。分别对薄膜的晶体结构、电学输运性能进行了研究。通过晶体结构分析表明超导薄膜沿<001>晶向生长,沉积后的薄膜超导转变温度(TC)随着薄膜厚度(20~200 nm)的增加而逐渐升高,显示薄膜由二维特征向三维特征过渡。在双层薄膜La1.8Sr0.2CuO4/La1.9Sr0.1CuO4结构中,其电学输运性能和所加电场的方向有很大关联,反映出电场的方向影响了超导薄膜中空穴载流子的扩散,进而影响了薄膜的超导转变温度和电学输运性能。  相似文献   

18.
CaZrO3 films are studied that were obtained on ceramic supports of solid electrolyte of ZrO2 + 9 mol % Y2O3 (YSZ, yttria stabilized zirconia) from alcohol solutions of zirconium oxychloride and calcium nitrate using the method of dipping with the following drying and annealing. The thickness and morphology of films depend on the concentration of the film-forming solution. Vickers microhardness of the CaZrO3 films was determined. The impedance spectroscopy method was used to study conductivity of films at the temperature of 400–600°C by comparison of impedance spectra of clean supports and supports with a film coating.  相似文献   

19.
Thermally induced changes in surface wettability, dewetting behavior, and proton transport of “self‐assembled” nanothin Nafion® films (4–300 nm) on SiO2 substrate is reported. Thermal annealing induces switching of the surface wettability of 55 nm and thinner films from hydrophilic to super‐hydrophobic. Thickness dependence of this behavior is observed with higher annealing temperature required for lower thickness films, indicating highly restrictive mobility of Nafion® ionomer as film thickness decreases. Dewetting is only observed for 4‐nm thin film. Significant suppression in proton conductivity upon thermal annealing was noted. Similarly, two other bulk properties, water uptake and swelling, were found to decrease upon annealing. This work reports a systematic examination of the thickness dependence of thermally induced changes in both surface and bulk properties of ultra‐thin Nafion®. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1267–1277  相似文献   

20.
For the study of thin, free liquid films (soap films) van der Waals dispersion forces were calculated from Lifshitz' theory for some three-layer models with film thicknesses between 5 and 150 nm. The complete expression as given by [2.] was used to calculate the force, the energy, and the second derivative of the energy after the thickness, as a function of film thickness. The second derivative of the energy after the thickness is needed in light scattering of soap films. The calculations are based on the dielectric data of [14.]. Some effects of the hydrocarbon layers on and electrolyte in the aqueous layer are considered. In order to make the results readily usable, the calculations are presented in the form of accurate empirical equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号