首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用大气等离子喷涂法分别以纳米和常规喂料制备出2种WC—Co涂层,在SRV摩擦磨损试验机上考察了2种涂层在干摩擦和水环境中的摩擦磨损性能.结果表明:在干摩擦和水环境中,纳米WC—Co涂层的摩擦系数和磨损率均小于常规WC—Co涂层;纳米和常规WC—Co涂层的磨损机制差异不大,在干摩擦下其磨损机制主要以粘着磨损、剥落和磨粒磨损为主;在水环境中,WC—Co涂层与Si3N4配副时的摩擦系数和磨损量较与不锈钢球配副时高,2种摩擦副的磨损机理有所不同,前者主要以剥落和疲劳磨损为主,后者主要以粘着磨损为主,伴有轻微的磨粒磨损.  相似文献   

2.
火焰喷涂ETFE涂层的干摩擦磨损性能研究   总被引:1,自引:1,他引:0  
采用火焰喷涂技术制备了乙烯-四氟乙烯共聚物(ETFE)涂层。利用红外光谱仪(FTIR)、差示扫描量热仪(DSC) 及摩擦磨损试验机考察了涂层的结构、热性能及摩擦学性能,并采用扫描电子显微镜(SEM)对涂层的磨损表面形貌进行分析。结果表明: ETFE粉末在火焰喷涂过程中没有发生氧化、降解反应;在摩擦载荷为20~120 N及摩擦速度为20~120 r/min的干摩擦条件下,涂层的摩擦系数为0.25~0.34,磨损量为0.006 8~0.157 8 g/(N?m);SEM分析表明涂层的磨损机制主要为塑性变形、疲劳磨损和轻微的黏着磨损。  相似文献   

3.
热冲压模具钢SDCM高温摩擦磨损性能   总被引:1,自引:0,他引:1  
为了研究新型热冲压模具材料SDCM钢的高温摩擦磨损性能,对比国外优质热作模具材料CR7V钢,利用扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射分析(XRD),UMT-3型高温摩擦磨损试验机以及Bruker白光轮廓仪等手段研究了新型热冲压模具钢SDCM热处理后组织状态、抗氧化性能以及不同温度高温摩擦磨损后磨痕形貌、截面形貌、表面物相.结果表明:不同温度下SDCM钢磨损机制差异明显,100℃时,材料主要为黏着磨损,经过300℃、500℃轻微氧化磨损与黏着磨损共存的阶段后,700℃时,磨损机制转变为氧化磨损;在100~400℃范围内,CR7V由于含有更多的M23C6型和M7C3型碳化物(分别占总碳化物的3.4%和12.7%),因而具有较高的耐磨性;500~700℃范围内,SDCM因具有更高的抗回火软化能力;同时Cr元素含量较少,抗氧化能力较弱,能够及时形成摩擦氧化层,作为"润滑剂",提高材料的耐磨性.  相似文献   

4.
均匀设计研究火焰喷涂尼龙1010涂层干摩擦磨损性能   总被引:4,自引:0,他引:4  
利用均匀试验设计方法考察了火焰喷涂尼龙1010涂层在干摩擦条件下同GCr15钢配副时的摩擦磨损性能;利用SPSS统计软件对试验结果进行了回归分析,建立了涂层摩擦系数和磨损质量损失同pv值相关性的数学模型;采用扫描电子显微镜分析了涂层磨损表面形貌,进而探讨了涂层的磨损机理.结果表明,所建立的回归模型可信、可行,具有显著性和统计意义;火焰喷涂尼龙1010涂层在不同试验条件下的摩擦磨损性能同pv值密切相关;这是由于尼龙1010涂层的粘弹性因摩擦表面温度不同而明显不同所致;当pv值较低时,涂层摩擦表面温度相对较低,涂层仅发生弹性变形,相应的摩擦系数较小;随着pv值的增加,涂层摩擦表面温度升高、破坏加剧,故摩擦系数和磨损质量损失增大;当pv值足够大时,涂层摩擦表面温度进一步升高,部分涂层发生熔融并形成润滑膜,相应的摩擦系数和磨损质量损失降低.涂层的主要磨损机理为塑性变形、疲劳磨损和粘着磨损。  相似文献   

5.
赵威  何宁  李亮 《摩擦学学报》2006,26(5):439-442
在THT07-135型高温摩擦磨损试验机上采用销-盘式接触形式,研究了WC-Co硬质合金/Ti6Al4V钛合金摩擦副在氮气介质中的摩擦磨损性能,并与空气介质中的摩擦磨损性能进行对比.结果表明:与空气介质相比,在氮气介质中WC-Co/Ti6Al4V摩擦副的摩擦系数稍低;WC-Co硬质合金比Ti6Al4V钛合金的磨损量低得多,氮气介质具有一定的减磨作用;钛合金材料的主要磨损机理为摩擦副之间产生较强的犁沟与挤压撕裂,而硬质合金的主要磨损机理为磨粒磨损与粘结剥落.  相似文献   

6.
耿哲  段德莉  刘阳  李曙 《摩擦学学报》2014,34(3):240-247
采用球/盘试验机研究WC-12Co和WC-17Co超音速火焰喷涂(HVOF)层在大气和Ar气环境中室温至650℃的磨损行为,结合磨痕形貌的SEM观测、成分的EDX和氧化物相的Raman光谱分析,探索涂层氧化和磨损的相互关系.结果表明:氧在WC-Co涂层的磨损过程中发挥至关重要的作用.在大气环境中,WC-Co涂层在室温至550℃形成的氧化物能减轻磨损,属氧化抑制磨损;650℃时氧化剧烈,涂层磨损严重,属氧化加速磨损.在Ar气环境中,WC-Co涂层在室温至550℃范围内的磨损严重程度远高于大气环境中试验的结果;由于高温下磨痕表面仍会生成少量氧化物,致使涂层的体积流失量呈现随温度升高而下降的特征;650℃时涂层的强烈氧化受到抑制,使其体积流失量甚至低于大气环境中的损失量.因此,乏氧环境中WC-Co涂层无论是在常温还是高温条件下均不宜作为耐磨涂层应用.  相似文献   

7.
周靖  沈承金  张宏 《摩擦学学报》2013,33(4):413-419
采用超音速火焰喷涂技术在35钢基体表面制备了WC-CoCr涂层,利用高精度SLP-20微机控制电液伺服微动试验机研究涂层在复合微动磨损条件下的摩擦学特性,通过扫描电镜观察涂层的微动磨损形貌,探讨其复合微动磨损机理.结果表明:涂层在振幅为40μm时,F-D图由准梯形型转变为闭合的椭圆形型,微动从滑移区过渡到微滑区,振幅增大,处于滑移区的时间也随之延长;WC-CoCr涂层复合微动磨痕呈现典型的中间黏着、边缘磨损的环状磨损形貌,具有非对称性,磨损初期的滑移区以黏着磨损为主,稳定阶段微滑区的磨损机理为疲劳磨损.  相似文献   

8.
采用火焰喷涂法制备了聚酰胺12/纳米SiO2(PA12/n-SiO2)涂层.利用红外光谱仪(FTIR)和X-射线衍射仪(XRD)对涂层的结构进行了分析;利用摩擦磨损试验机及扫描电子显微镜表征了涂层的摩擦磨损性能及磨损表面形貌.结果表明:火焰喷涂法适宜制备PA12/n-SiO2涂层;PA12/n-SiO2粉末在火焰喷涂过程中没有发生氧化或降解反应;n-SiO2含量为1.5wt%的涂层在100 N、100 r/min、60 min的干摩擦条件下,其摩擦系数为0.52,磨损量为1.5 mg,跑合期为25 min左右,而纯涂层在相同摩擦条件下摩擦系数、磨损量、跑合期分别为0.59、3.5 mg和35 min,跑合期较纯涂层短,显示复合涂层具有较好的耐磨性能,分析认为涂层的磨损机理主要为疲劳磨损、塑性变形和黏着磨损.  相似文献   

9.
微孔贯通型高温自润滑金属陶瓷的摩擦磨损性能研究   总被引:4,自引:2,他引:2  
以TiH2和CaCO3为复合造孔剂,以硬质微细颗粒为惰性弥散质点,采用真空烧结法制备出具有贯通型微孔结构的Al2O3-Ni-Cr-Mo-Si-Fe系金属陶瓷烧结体,并在烧结体中浸渍Ag-Cu-Pb-Sn系浸渍型固体润滑剂制备出新型高温扩散自润滑材料.结果表明:该材料具有良好的高温自润滑和耐磨性;在600℃下与不同配对材料进行摩擦磨损试验时,摩擦系数变化范围为0.22~0.29,磨损率变化范围约为(6~7)×10-15m3/N·m;润滑膜主要由浸渍在贯通型微孔中的浸渍型固体润滑剂通过微孔向摩擦表面的扩散、并在高温摩擦条件下被软化或熔化而形成.  相似文献   

10.
摩擦速度对铜基摩擦材料摩擦磨损性能影响   总被引:8,自引:4,他引:8  
采用粉末冶金技术制备了铜-石墨-SiO2烧结材料,通过定速摩擦试验机,在摩擦速度为7.8~47.1 m/s的范围内,研究摩擦速度、第三体与摩擦磨损性能的关系.结果表明,摩擦第三体的状态与摩擦速度密切相关,并明显影响摩擦磨损性能.在摩擦顺序从低速开始向高速进行的条件下,随摩擦速度的提高,摩擦表面第三体由颗粒状分布向密实状态转变,表面微观硬度提高,摩擦系数下降,磨损率变化不明显.这归因于低速条件下摩擦副间的啮合程度大,使摩擦系数处于较高值.随速度增加,致密状第三体的易流动性具有润滑和平滑作用,起到降低摩擦系数的作用;在摩擦顺序从高速开始向低速进行条件下,摩擦表面被高速摩擦形成的致密第三体所覆盖,致密第三体的稳定性具有降低摩擦系数波动的作用.但磨损率在摩擦速度较低时出现快速增加.原因在于随摩擦速度的降低,摩擦温度降低,致密第三体脆性增加,致密第三体的大面积破裂和剥落提高了磨损率.  相似文献   

11.
纳米碳化钨增强镍基合金热喷涂涂层的摩擦磨损性能研究   总被引:4,自引:2,他引:2  
采用高速氧焰喷涂技术制备质量分数为40%纳米碳化钨增强镍基合金涂层,探讨其显微组织、相组成及硬度,并评价其摩擦磨损性能.结果表明,与传统碳化钨增强镍基合金涂层相比较,两类涂层的组成相同,但纳米碳化钨增强镍基合金涂层组织中的碳化钨颗粒尺寸较小且分布更均匀,其硬度比传统碳化钨增强镍基合金涂层高10%,磨痕深度小20%.  相似文献   

12.
利用火焰喷涂技术在45^#钢表面制备了尼龙1010(PAlOlO)涂层;采用傅立叶转换红外光谱仪和X射线衍射仪分析了涂层的化学及晶体结构特征;采用MM-200型摩擦磨损试验机考察了涂层同不锈钢配副时的滑动摩擦磨损特性;并基于涂层及偶件磨损表面形貌扫描电子显微分析探讨了涂层的磨损机理.结果表明,PA1010原料粉末在热喷涂过程中未发生明显的降解与氧化;PA1010涂层同不锈钢配副时的摩擦磨损性能同载荷密切相关,这是由于载荷影响其向偶件磨损表面转移及成膜所致;PA1010涂层在较低载荷下同不锈钢配副时主要发生轻微粘着磨损,在较高载荷下则主要发生严重粘着磨损及塑性变形.  相似文献   

13.
Ti3SiC2/Inconel718摩擦副的高温摩擦学性能   总被引:1,自引:0,他引:1  
本文考察了Ti3SiC2-Inconel 718摩擦副从室温到800 ℃范围内的摩擦磨损性能.结果表明:温度的升高有利于改善Ti3 SiC2-Inconel 718摩擦副的摩擦磨损性能,在800℃时,其摩擦磨损性能优异.随着温度的升高,摩擦系数从室温的0.71降至800℃时的0.37,Ti3SiC2的磨损率从4×10-3 mm3/(N·m)降至10-5mm3/(N·m)以下.高温塑性变形和摩擦氧化物层的形成导致摩擦系数的降低,300℃以下,晶粒的断裂、拔出与脱落以及材料向合金的转移造成了Ti3SiC2高的磨损率,从400℃至800℃,Ti3 SiC2晶粒的断裂与脱落受到明显抑制,其磨损率显著降低.  相似文献   

14.
Ni/聚氨酯纳米复合涂层的制备及其摩擦学性能研究   总被引:13,自引:3,他引:13  
用超声化学方法制备了纳米Ni微粒,并在此基础上制备了Ni/聚氨酯纳米复合涂层,用X射线衍射仪和透射电子显微镜表征了纳米Ni微粒的结构和形貌以及纳米复合涂层中Ni微粒的分布;用球—盘摩擦磨损试验机评价了Ni/聚氨酯纳米复合涂层的摩擦磨损性能.结果表明:纳米Ni微粒平均品粒尺寸为10nm;纳米Ni微粒均匀分布在Ni/聚氨酯纳米复合涂层中,其颗粒尺寸约为50nm;Ni/聚氨酯纳米复合涂层的摩擦学性能明显优于聚氨酯涂层.  相似文献   

15.
采用化学复合镀工艺,在碳钢表面制备了Ni-P-MoS2和Ni-P-CaF2复合镀层,并对镀层进行热处理.本课题主要对两种复合镀层在高温时的摩擦磨损性能进行对比分析,并将其与Ni-P镀层的摩擦磨损性能进行比对,讨论工作温度对复合镀层摩擦磨损性能的影响,并阐述了镀层在不同温度下的磨损机理.结果表明:当温度从常温升至500℃左右时,Ni-P-MoS2复合镀层的摩擦学性能较优,Ni-P-CaF2复合镀层和Ni-P镀层次之,Ni-P-MoS2复合镀层在高温摩擦磨损时表面生成一层致密的氧化膜起到很好的减摩作用.  相似文献   

16.
采用两种喷涂技术制备铁基合金涂层的摩擦磨损特性研究   总被引:8,自引:0,他引:8  
利用超音速火焰喷涂(HVOF)技术和等离子喷涂(ASP)技术,分别在0Cr13Ni5Mo不锈钢基体上制备了铁基非晶合金涂层和铁基非晶纳米晶涂层,研究了2种涂层在室温下的摩擦磨损特性,并探讨其磨损机理.结果表明,2种热喷涂涂层中以等离子喷涂工艺制备的铁基非晶纳米晶涂层的耐磨性较好,其主要原因是等离子喷涂涂层具有高硬度的同时在涂层中弥散分布着纳米晶颗粒,两者共同增强了涂层的耐磨性能.采用等离子喷涂技术制备的涂层的磨损机制主要为磨粒磨损,而超音速火焰喷涂技术制备的涂层的磨损机理为粘着磨损和疲劳磨损的综合作用,其中以疲劳磨损为主.  相似文献   

17.
以微米级ZrB_2和SiC粉末为原料,采用热压烧结制备ZrB_2-SiC复相陶瓷,考察了SiC含量,摩擦对偶,速度和载荷对ZrB_2-SiC复相陶瓷摩擦磨损特性的影响.结果表明:ZrB_2-SiC复相陶瓷的摩擦系数和磨损率对SiC含量和摩擦对偶的变化较为敏感,速度和载荷变化,摩擦系数和磨损率的波动较大;以WC为对偶,速度0.1 m/s,载荷5 N时的ZrB_2-SiC复相陶瓷的平均摩擦系数和磨损率分别仅为0.4和2.41×10–4 mm3/(N·m).ZrB_2-SiC复相陶瓷的磨损机制以机械磨损为主,伴有轻微摩擦氧化,摩擦层的形成有利于摩擦系数的减小.  相似文献   

18.
采用新型高功率脉冲复合磁控溅射技术制备MoS2-Ti复合膜,并研究基体偏压和测试环境对复合膜摩擦学性能的影响.结果表明:制备的MoS2-Ti复合膜表面呈现颗粒状结构,Ti在薄膜表层与O反应形成氧化物有效抑制MoS2的氧化.随着基体负偏压从OV增大到-400 V,复合膜的S/Mo原子比逐渐减小.在-300 V偏压下,颗粒堆积最为紧密,薄膜硬度和弹性模量达到最大值,分别为9.7和137.1GPa,并具有最低的平均摩擦系数值(0.04)和磨损率[(10-7mm3/(N·m)].多种测试环境下的摩擦研究显示:在室温大气环境下复合膜的摩擦学性能与其结构的致密性紧密相关,而在N2以及不同湿度环境下薄膜表现出的优异摩擦学性能则归因于在摩擦过程中有效形成的转移膜贡献.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号