共查询到16条相似文献,搜索用时 66 毫秒
1.
本文通过水热法合成了含有3种不同稀土离子的层状稀土氢氧化物 (Gd0.5Tb0.5-xEux)2(OH)5NO3·nH2O, 并选择有机物水杨酸(HSA)作为敏化剂, 通过在水热条件下的离子交换反应, 成功将其以有机阴离子形式与层状稀土氢氧化物插层组装获得有机-无机杂化荧光材料(SA--LRHs:xEu)。荧光性质测定表明, SA-通过有效的能量转移增强了Tb3+的特征绿色荧光发射, 随着Eu3+含量的增加, Eu3+的特征红色荧光发射随之增强, 而Tb3+的特征绿色荧光发射随之减弱。在此基础上, 将发光颜色可调的有机-无机荧光材料与聚甲基丙烯酸甲酯(PMMA)复合组装出透明的荧光薄膜。 相似文献
2.
3.
4.
5.
以共沉淀法合成的磁性层状复合氢氧化物(Magnetic layered double hydroxide, MLDH)为前驱体, 通过对原位反应系统液相数据的拟合与固相样品的表征, 研究了0~50 ℃条件下MLDH与氟尿嘧啶(5-FU)的离子交换动力学特征. 结果表明, MLDH及离子交换产物MLDH-FU为以六方晶系为主并混杂微量氧化铁的复合磁性晶相; MLDH-FU离子交换速率随温度的升高而显著加快, FU, OH-和Cl- 3种客体的浓度变化分别服从二级、 零级及一级反应速率模型, 反应活化能依次为12.69, 27.88和3.580 kJ/mol. 固相表征参数的变化与液相动力学过程、 主-客体结构调整及MLDH-FU粒子陈化过程相符; 离子交换限定在LDH层间, 不涉及层板内部秩序, 不改变前驱体的结构与形貌特征, 具有侧向非断层反应习性, 是交换剂在MLDH外周经吸附亲和、 侧向进攻、 层间置换及柱撑模型转换再到新的插层客体主导调整及晶粒发育陈化的有序过程. 相似文献
6.
层状复合氢氧化物(LDHs)因其化学组成可调、比表面积大、生物相容性好等特点,目前在环境、能源和生物医药等领域广受关注.然而, LDHs在合成过程中由于其分子内作用力易发生团聚而导致其在基体中的分散不均匀,极大地限制了LDHs在实际中的应用.有机改性是改善LDHs分散性的有效方法,从表面改性和插层改性两个方面综述了近年来LDHs的有机改性方法,并介绍了其在阻燃、吸附、催化、气体阻隔、发光、储能和生物医药材料等领域的应用.最后对改性后LDHs未来的研究方向和应用领域进行了展望. 相似文献
7.
采用水热法制备了十二烷基磺酸根(DS-)插层的稀土离子(Eu3+, Tb3+和Ce3+)激活的层状氢氧化镧(LLaH), 通过微波法将苯甲酸根(BA-)与层中DS-进行离子交换反应, 形成杂化组装. X-射线衍射(XRD)结果表明这些杂化组装具有典型的层状结构, 离子交换反应后层间距由3.2 nm减小为1.9 nm. 光致发光光谱显示稀土Eu3+和Tb3+掺杂的LLaH均表现出相应的特征红色和绿色发射, 但(Eu/Tb)0.1La1.9(OH)5BA•H2O的发光强度是(Eu/Tb)0.1La1.9(OH)5DS•H2O的十几倍, 这得益于BA-对稀土离子发光产生了很好的敏化作用. 通过超声和离心过程将Tb0.1La1.9(OH)5BA•H2O, Eu0.1La1.9(OH)5BA•H2O和Ce0.08La1.92(OH)5DS•H2O杂化组装样品进行层剥离制成胶体溶液, 发现不同比例的Eu0.1La1.9(OH)5BA•H2O和Tb0.1La1.9(OH)5BA•H2O两种胶体混合能够对发光颜色进行调整; 三种胶体混合后通过改变激发波长也可以有效调整发光颜色, 特别是在280~290 nm紫外光激发下, 能够获得白色荧光, 显示出优异的光功能特性. 相似文献
8.
9.
通过XRD和IR表征对镁铝层状复合氧氧化物(LDH)与水杨酸、乙酰氨基酚、乙酰水杨酸,以及谷氨酸、色氨酸、牛黄酸反应产物的比较分析,研究了不同药物对有关组装方式的适宜性.结果表明水杨酸类药物均可通过离子交换组装到LDH层间,晶胞参数c由2.3893 nm依次增大为2.4024、2.4110和2.4111nm,通道高度h由0.3194 nm增大为0.3238、0.3267和0.3268 nm;通过离子交换能将谷氨酸组装到LDH层间,产物的IR吸收、热分解行为及TEM形貌与前体有明显区别,晶胞参数c由2.3765nm增大为2.3851nm,h由0.3152nm增大为0.3180nm;共沉淀法适宜制备LDH-牛黄酸插层复合物,但简单的离子交换不能使色氨酸与LDH有效复合. 相似文献
10.
层状双氢氧化物(Layered double hydroxide, LDH)是一种具有阴离子可交换性质的层状无机材料, 由于其具有多种功能性质, 已被广泛应用于催化[1~3]、酸吸附剂[4]、传感器[5]及聚合物填料[6~8]等领域. 传统的共沉淀法制备的LDH结晶度低、尺寸小(直径通常小于100 nm). 1998年, Costantino等[9]采用均匀沉淀法制备出了高结晶度、大尺寸(微米量级)且层间具有CO32-的LDH(LDH-CO3), 引起了人们的极大兴趣. 为解决LDH-CO3难于交换和剥离的难题, Iyi等[10,11]采用两步法制备了层间具有NO3- 或有机阴离子的LDH, 即首先采用 HCl-NaCl混合溶液将LDH-CO3转化成为LDH-Cl, 然后再采用过量的阴离子进行交换制备LDH-NO3或有机阴离子插层的LDH. 相似文献
11.
Sheng Chen Prof. Junwu Zhu Ling Qiu Prof. Dan Li Prof. Xin Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(23):7631-7636
The development of novel nanostructured electrode materials with high performance and based on abundant elements is a key element in the societal pursuit of sustainable energy. Graphene‐based structures with rich macroporosity and high conductive networks are promising components to develop novel electrode materials. Herein, we described a facile procedure to confine Ni(OH)2 particles in a graphene film, leading to a new sandwich‐like hybrid structure. The hybrid film offers simultaneously ordered ion diffusion channels and high electrical conductivity, which facilitate the improvement of both electrode kinetics and electrochemical stability, thus leading to high capacitance, fast rate capability, and stable cycle life as supercapacitor materials. This work provides a facile pathway for optimized structures for electrode materials, and represents a benefit for the global issues of energy shortage and environmental pollution. 相似文献
12.
无机纳米稀土发光材料的制备方法* 总被引:4,自引:0,他引:4
无机纳米稀土发光材料作为一种重要的发光材料,由于具有独特的光、电和化学性质,使其在高性能磁体、发光器件、显示、生物标记、光学成像和光学治疗等方面得到了广泛的应用。稀土发光材料的这些性质与材料的尺寸和形状密切相关,近年来研究者已经利用多种合成方法制备了不同形状的纳米稀土发光材料,包括纳米线、纳米棒、纳米管、纳米纤维和纳米片等。本文综述了无机纳米稀土发光材料的几种常用的制备方法,包括水热/溶剂热法、有机/无机前驱体热分解法和超声辅助合成法等,评述了这些方法的优缺点,并结合课题组在无机纳米稀土发光材料制备方面的工作,对无机纳米稀土发光材料制备方法的发展进行了展望。 相似文献
13.
14.
稀土三酞菁夹心化合物混合LB膜的研究 总被引:3,自引:0,他引:3
将不对称三明治型夹心化合物(Pc)Dy[Pc(OC8H17)8]Dy[Pc(OC8H17)8]与硬脂酸混合成膜,表面压-面积(π-A)曲线表明形成了稳定的单层膜,由透射电子显微镜(TEM)观察,表明硬脂酸的加入有效地改善了分子的聚集行为,分子形成了取向高度有序的结构。用紫外-可见光谱、偏振紫外可见光谱、低角X射线衍射等对LB膜进行了研究,发现该取代稀土三酞菁分子在气/液界面上长链向上伸展,分子之间均以面对面(face-to-face)排列,以一边接触(edge-on)方式取向,大环平面与基片夹角约为52°,每层厚度为2.41 nm。 相似文献
15.