首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have shown that WO3 and MoO3 with Pt or Pd additives exhibit high catalytic activity in the reaction of H2 oxidation. In the temperature range 313 K to 353 K, we have studied the kinetic behavior of the reaction on 0.1 mass % Pt(Pd)/WO3 and Pt(Pd)/MoO3 samples. We have established that the kinetics of H2 oxidation on these catalysts correspond to an Eley - Rideal mechanism. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 5, pp. 313–316, September–October, 2005.  相似文献   

2.
The surface of the spinel LiMn2O4 was coated with AlF3 by a chemical process to improve its electrochemical performance at high temperatures. The morphology and structure of the original and AlF3-coated LiMn2O4 samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM). All the samples exhibited a pure cubic spinel structure without any impurities in the XRD patterns. It was found that the surfaces of the original LiMn2O4 samples were covered with a nanolayer AlF3 after the treatment. The charge/discharge of the materials were carried at 220 mA/g in the range of 3.0 and 4.4 V at 55°C. While the original LiMn2O4 showed 17.8% capacity loss in 50 cycles at 55°C, the AlF3-coated LiMn2O4 (118.1 mA h/g) showed only 3.4% loss of the initial capacity (122.3 mA h/g) at 55°C. It is obvious that the improvement in cycling performance of the coated-LiMn2O4 electrode at 55°C is attributed to the presence of AlF3 on the surface of LiMn2O4. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 7, pp. 817–819. The article is published in the original  相似文献   

3.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

4.
Submicron LiCoO2 was synthesized by a polymer pyrolysis method using LiOH and Co(NO3)2 as the precursor compounds. Experimental results demonstrated that the powders calcined at 800 °C for 12 h appear as well-crystallized, uniform submicron particles with diameter of about 200 nm. As a result, the as-prepared LiCoO2 electrode displayed excellent electrochemical properties, with an initial discharge capacity of 145.5 mAh/g and capacity retention of 86.1% after 50 cycles when cycled at 50 mA/g between 3.5 and 4.25 V. When cycled between 3.5 and 4.5 V, the discharge capacity increased to 177.9 mAh/g with capacity retention of 85.6% after 50 cycles.  相似文献   

5.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

6.
Three kinds of LiFePO4 materials, mixed with carbon (as LiFePO4/C), doped with Ti (as Li0.99Ti0.01FePO4), and treated both ways (as Li0.99Ti0.01FePO4/C composite), were synthesized via ball milling by solid-state reaction method. The crystal structure and electrochemical behavior of the materials were investigated using X-ray diffraction, SEM, TEM, cyclic voltammetry, and charge/discharge cycle measurements. It was found that the electrochemical behavior of LiFePO4 could be increased by carbon coating and Ti-doping methods. Among the materials, Li0.99Ti0.01FePO4/C composite presents the best electrochemical behavior, with an initial discharge capacity of 154.5 mAh/g at a discharge rate of 0.2 C, and long charge/discharge cycle life. After 120 cycles, its capacity remains at 92% of the initial capacity. The Li0.99Ti0.01FePO4/C composite developed here can be used as the cathode material for lithium ion batteries.  相似文献   

7.
LiNi0.8Co0.2O2 and Ca-doped LiNi0.8Co0.2O2 cathode materials have been synthesized via a rheological phase reaction method. X-ray diffraction studies show that the Ca-doped material, and also the discharged electrode, maintains a hexagonal structure even when cycled in the range of 3.0–4.35 V (vs Li+/Li) after 100 cycles. Electrochemical tests show that Ca doping significantly improves the reversible capacity and cyclability. The improvement is attributed to the formation of defects caused by the partial occupancy of Ca2+ ions in lithium lattice sites, which reduce the resistance and thus improve the electrochemical properties.  相似文献   

8.
Yttrium-doped lithium manganese oxide (LiMn0.98Y0.02O2) was prepared by ion exchange of lithium for sodium in NaMn0.98Y0.02O2 precursors obtained by using rheological phase reaction method. This material had small particle size, which was composed of grain size of about 100 nm. Especially, LiMn0.98Y0.02O2 delivered the initial discharge capacity of about 191 mA h g−1 at room temperature when cycled between 2.0 and 4.4 V vs Li/Li+. Moreover, it showed an excellent cycling behavior, its specific capacity remained above 173 mA h g−1 after 20 cycles, and the material did not transform into spinel structure during the electrochemical cycling according to the cyclic voltammograms and X-ray powder diffraction. The electrochemical results revealed that the doping of Y3+ improved the performance of LiMnO2 considerably.  相似文献   

9.
A novel organic gel film modified electrode was simply and conveniently fabricated by casting LixMoOy and polypropylene carbonate (PPC) onto the surface of a gold electrode. The cyclic voltammetry and amperometry studies demonstrated that the LixMoOy film modified electrode has a high stability and a good electrocatalytic activity for the reduction of iodate. In amperometry, a good linear relationship between the steady current and the concentration of iodate was obtained in the range from 3×10–7 to 1×10–4 mol L–1 with a correlation coefficient of 0.9997 and a detection limit of 1×10–7 mol L–1.  相似文献   

10.
In this paper, the electrochemical performances of a layered double hydroxide, [Ni4Al(OH)10]NO3, of different particle sizes are studied. The results show that the particle size of the sample has evident effects on its discharge capacity at high current density, although a larger capacity may be observed for the bigger particles when they are discharged at lower current densities, e.g. 0.2 A g−1. However, the capacity decreases more quickly than that of the sample in smaller particle size when the current density increases. For example, the discharge capacity of the smallest particle remains as high as 180 mAh·g−1 even at very high current density, e.g. 4.0 A g−1. The results also show that long time soaked electrodes in 7 mol l−1 KOH have improved performance, especially for the hydrothermal samples. It also seems that there is an optimal size for materials, which can maintain their performance for longer time.  相似文献   

11.
Molybdenum trioxide (MoO3) has attracted considerable attention due to their typical two-dimensional layered structure consisting of double layers of edge- and vertex-sharing MoO6 octahedral being weakly held together by van der Waals bonds. These MoO3 nanostructures and their polymer composites are currently drawing interest for the potential applications of Li batteries, supercapacitors, and other electrochemical as well as electrochromic display devices. In this paper, we report the synthesis of MoO3 nanobelts and polyethylene glycol (PEG) surfactant MoO3 nanobelts by hydrothermal method. Structure and morphology of the samples were investigated by X-ray diffraction, Fourier transform spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM). The pure MoO3 nanobelts show an initial specific capacity of 275 mAh g−1, whereas the 0.5 mol% PEG surfactant MoO3 nanobelts show 307 mAh g−1 at constant current density of 30.7 mA g−1 with the 1.0–3.0 V vs. Li/Li+ potential range. It was found that PEG surfactant MoO3 nanobelts show not only a high initial specific capacity but also show better cyclic performance compared with that of pure MoO3 nanobelts. The PEG surfactant MoO3 nanobelts show stability and improvement of the specific capacity due to decreasing the length, width, and thickness of the nanobelts by surface reaction. Electrochemical impedance spectroscopy reveals that the PEG surfactant MoO3 nanobelts exhibit low electrode resistance compared with pure MoO3 nanobelts.  相似文献   

12.
Atomic models are proposed for nanotubes of the titanium silicocarbides Ti2SiC, Ti3SiC2, and Ti4SiC3, and their electronic structure and interatomic interactions are investigated by the density functional tight-binding method (DFTB) in comparison with the corresponding crystalline phases. Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 45, No. 2, pp. 88-92, March-April, 2009.  相似文献   

13.
The reaction mechanism of (CH3)3CO. radical with NO is theoretically investigated at the B3LYP/6-31G* level. The results show that the reaction is multi-channel in the single state and triplet state. The potential energy surfaces of reaction paths in the single state are lower than that in the triple state. The balance reaction: (CH3)3CONO⇔(CH3)3CO.+NO, whose potential energy surface is the lowest in all the reaction paths, makes the probability of measuring (CH3)3CO. radical increase. So NO may be considered as a stabilizing reagent for the (CH3)3CO. radical.  相似文献   

14.
Thermal properties of Co2FeV3O11 have been reinvestigated. It has been proved that this compound does not exhibit polymorphism. It melts incongruently at the temperature of 770±5°C and the phase with lyonsite type structure is the solid product of this melting. Phase relations in the whole subsolidus area of the CoO–V2O5–Fe2O3 system have been determined. The solidus area projection onto the component concentration triangle plane of this system has been constructed using the DTA and XRD methods. 15 subsidiary subsystems can be distinguished in this system.  相似文献   

15.
Vibrational spectra of finely divided amorphous CsHSO4,Cs5H3(SO4)4 · H2O, and composites based on these are measured and analyzed. An analysis of the spectra indicates the occurrence of substantial changes in the system of hydrogen bonds and in the spectral range of the sulfate group of acid sulfates in the composites. Structural dynamics of the SO4 tetrahedrons is in full conformance with protonic conduction and the data of x-ray diffraction analyses accompanied by differential scanning calorimetry. It is shown that mobility of protons in the composites increases. A mechanism of the formation of the composites and their conduction is proposed.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 640–645.Original Russian Text Copyright © 2005 by Ponomareva, Lavrova, Burgina.  相似文献   

16.
Er3+-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method using the aluminum isopropoxide as precursor, acetylacetone as a chelating agent, nitric acid as a catalyzer, and hydrated erbium nitrate as a dopant under isopropanol environment. The different phase structure, including three crystalline types of (Al, Er)2O3 phases, α, γ, θ, and an Er–Al–O stoichiometric compound phase, Al10Er6O24, was observed for the 0.01–0.5 mol% Er3+-doped Al2O3 nanopowders at the sintering temperature of 1,000 °C. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978 nm semiconductor laser diodes excitation. With increasing Er3+ doping concentration from 0.01 to 0.1 mol%, the intensity of the green and red emissions increased with a decrease of the intensity ratio of the green to red emission. When the Er3+ doping concentration rose to 5 mol%, the intensity of the green and red emissions decreased with an increase of their intensity ratio. The maximum intensity of both the green and red emissions with the minimum of intensity ratio was obtained, respectively, for the 0.1 mol% Er3+-doped Al2O3 nanopowders composed of a single α-(Al,Er)2O3 phase. The intensity ratio of the green emission at 523 and 545 nm increased monotonously for all Er3+ doping concentrations. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3+-doped Al2O3 nanopowders.  相似文献   

17.
Phase-pure nanocrystalline Li4Ti5O12 with BET surface areas between 183 and 196 m2/g was prepared via an improved synthetic protocol from lithium ethoxide and titanium(IV) butoxide. The phase purity was proved by X-ray powder diffraction, Raman spectroscopy and cyclic voltammetry. Thin-film electrodes were prepared from two nanocrystalline samples of Li4Ti5O12 and one microcrystalline commercial sample. Li-insertion behavior of these electrodes was related to the particle size.Presented at the 3rd International Meeting on Advanced Batteries and Accumulators, 16–20 June 2002, Brno, Czech Republic  相似文献   

18.
Highly (110)-oriented Ba0.65Sr0.35TiO3 films were deposited on Pt/LaNiO3/SiO2/Si substrates by a sol–gel method. It was found that the (110)-preferred Pt film was very effective for growing (110)-oriented ferroelectric films with perovskite structure. The as-grown Ba0.65Sr0.35TiO3 films showed good dielectric properties with dielectric constant and loss tangent tan δ = 0.026. Excellent dielectric tunability was also achieved in the (110)-oriented films. With applying an electric field of 230 kV/cm at 100 kHz, the dielectric tunability and the figure of merit can reach up to 63.4% and 16, respectively. These results indicate that the highly (110)-oriented Ba0.65Sr0.35TiO3 film is a promising candidate for the applications in microwave tunable devices.  相似文献   

19.
Enthalpy of formation of the perovskite-related oxide BaCe0.9In0.1O2.95 has been determined at 298.15 K by solution calorimetry. Solution enthalpies of barium cerate doped with indium and mixture of BaCl2, CeCl3, InCl3 in ratio 1:0.9:0.1 have been measured in 1 M HCl with 0.1 M KI. The standard formation enthalpy of BaCe0.9In0.1O2.95 has been calculated as −1611.7±2.6 kJ mol−1. Room-temperature stability of this compound has been assessed in terms of parent binary oxides. The formation enthalpy of barium cerate doped by indium from the mixture of binary oxides is Δox H 0 (298.15 K)=−36.2±3.4 kJ mol−1.  相似文献   

20.
Areas of fusion and crystallization peaks of K3TaO2F4 and KTaF6 were measured using the DSC mode of a high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities, considering the temperature dependence of the calorimeter sensitivity, values of the fusion enthalpy of K3TaO2F4 at the fusion temperature of 1181 K of (43 ± 4) kJ mol−1 and of KTaF6 at the fusion temperature of 760 K of (8 ± 1) kJ mol−1 were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号