首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
Ti-Zr催化剂对NaH/A1复合物可逆储氢特性的影响   总被引:1,自引:0,他引:1  
采用机械球磨(NaH/A1 Ti)和(NaH/A1 Ti-Zr)复合物的方法加氢制备了NaAIH4配位氢化物,系统研究了Ti、Ti-Zr催化剂以及不同加氢条件对其可逆储氢行为的影响.结果表明,对于NaH/A1体系的吸放氢性能,共掺金属Ti粉/Zr粉的催化作用比单独掺金属Ti粉的催化作用要好.随着加氢温度从85 ℃上升到140 ℃,体系的吸氢容量先增后减,并在120 ℃时达到最大值;同时,发现共掺Ti-Zr催化剂的复合物具有最佳的储氢性能,在120和85℃时的吸氢量分别为4.61%和3.52%(w),比仅掺Ti催化剂的复合物分别高出0.40%和0.70%(w)的吸氢量.随着加氢压力的增大,(NaH/A1 Ti-Zr)复合物的吸氢性能随之提高.XRD和DSC分析结果表明,NaA1H4体系的放氢过程明显发生两步分解反应,共掺Ti-Zr催化剂的复合物储氢性能优于单独掺Ti催化剂的原因是,共掺催化剂能有效改善NaA1H4体系吸放氢反应的动力学性能,并降低体系的放氢温度.  相似文献   

2.
掺Ti球磨NaH/Al复合物的微结构和储氢特性   总被引:1,自引:0,他引:1  
本文采用机械球磨法制备了(NaH/Al)+x(摩尔分数, %)Ti(x=0, 4, 6, 10)复合物, 研究了不同球磨气氛和Ti催化剂含量对其微结构和储氢性能的影响, 使球磨(NaH/Al)体系储氢的容量达到质量分数为4.01%.  相似文献   

3.
络合氢化物Ti-NaAlH4的制备与储氢特性   总被引:3,自引:0,他引:3  
采用Ti粉为催化剂前驱体、预处理Al粉和NaH为合成原料, 通过机械球磨-加氢方法合成出络合氢化物Ti-NaAlH4, 系统研究了球磨保护气氛、球磨时间和氢化加氢压力等制备参数对其储氢性能的影响. 结果表明, 制备方法对Ti-NaAlH4储氢特性有很大影响. 与氩气保护气氛相比, 在氢气气氛中球磨制备的复合物具有更高的吸放氢性能. 在氢气保护气氛下, 随着球磨时间从6 h增至24 h, 复合物的吸氢容量和吸氢速率先增后减, 12 h时达到最佳值, 而复合物的放氢容量和放氢速率则逐渐增高; 进一步延长球磨时间会使颗粒发生团聚, 从而导致吸氢性能下降. 随着氢化加氢压力从7.5 MPa升至13.5 MPa, 复合物的吸氢容量(质量分数)由2.83%逐渐增至4.21%. 复合物球磨后出现的Na3AlH6中间氢化物相表明, 在氢气下掺Ti球磨对NaH和Al的氢化反应起到很好的促进作用.  相似文献   

4.
采用NaH和Al为合成原料,镨、钕氢化物为催化剂,通过机械球磨(NaH/Al+6%(摩尔分数)RE-H)(RE=Pr,Nd)复合物的方法并加氢合成NaAlH4络合氢化物,系统研究了催化剂对其吸放氢性能的影响。结果表明,加入PrH2.92和NdH2.27能明显改善NaH/Al复合物的吸放氢动力学性能,有效降低NaAlH4的脱氢温度。(NaH/Al+6%PrH2.92)和(NaH/Al+6%NdH2.27)复合物的120℃吸氢容量分别为3.57%和3.61%(质量分数),170℃放氢容量分别为2.57%和2.95%;且两者均具有较好的吸放氢循环稳定性,但吸(放)氢后样品中均存在少量Na3AlH6相,表明样品的吸(放)氢反应进行得并不彻底,使得其实际吸放氢容量低于理论可逆储氢容量。研究表明,PrH2.92和NdH2.27在球磨、吸/放氢过程中始终稳态存在,起着催化储氢作用;(NaH/Al+6%PrH2.92)复合物的放氢活化能稍低于(NaH/Al+6%NdH2.27)复合物。  相似文献   

5.
将LiAlH4和LiNH2按摩尔比1:2进行球磨复合,随后将复合物进行加热放氢特性研究,然后对其完全放氢后的产物进行再吸氢特性研究。通过X射线衍射分析(XRD)、热分析(DSC)和红外 (FTIR)分析等测试手段对其反应过程进行了系统分析研究。研究结果表明,LiAlH4/2LiNH2加热放氢分为3个反应阶段,放氢后生成Li3AlN2,总放氢量达到8.65wt%。放氢生成的Li3AlN2在10MPaH2压力和400℃条件下,可以可逆吸氢5.0wt%,吸氢后的产物为 LiNH2 、AlN和LiH,而不能再生成LiAlH4。本文对LiAlH4/2LiNH2复合物放氢/再氢化过程机理进行了分析。  相似文献   

6.
以NaH粉和Al 粉为合成原料, 分别采用2% (摩尔分数, x) CeCl3和2% CeCl3/y% KH (y=0.02, 0.04)为催化添加剂, 在室温和3 MPa氢压下, 通过反应球磨(NaH/Al+CeCl3)和(NaH/Al+CeCl3/yKH) (y=0.02, 0.04)复合物成功制备出Na-Al-H 配位氢化物. 吸放氢性能测试结果表明, KH的加入能有效改善Na-Al-H 体系中第二步脱氢反应放氢动力学性能. (NaH/Al+CeCl3/0.02KH)复合物170℃放氢时可在20 min内完成脱氢过程, 且在较低温度(100-140℃)下具有良好的可逆吸放氢性能. Kissenger 方法计算表明, 添加KH可降低Na-Al-H 体系第二步脱氢反应的表观活化能, 降低其放氢峰值温度. 相结构分析表明, KH的添加使Na-Al-H 体系中Na3AlH6的晶胞体积发生膨胀, 进而提高体系的第二步放氢动力学性能.  相似文献   

7.
研究了机械球磨制备的(2Mg+Fe)+x%Ni(x=0, 50, 100, 200)复合物的微结构和电化学储氢性能. 结果表明, 不加镍粉时, 镁粉与铁粉混合物经120 h球磨后仍然为纯镁与纯铁两相组织, 其电化学放电容量不到20 mA·h/g. 而加入镍粉和提高球磨强度有助于Mg-Fe非晶的形成, 并使颗粒尺寸减小, 添加镍粉越多, Mg-Fe非晶化程度越高, 放电容量越大, 而组合钢球混合球磨的粉末比等径钢球球磨的非晶化程度更高, 颗粒也更加细小均匀. 在x=100时, 不同尺寸和等径钢球球磨120 h合成的Mg2Fe非晶复合物的最大放电容量分别达到542.0和455.3 mA·h/g.  相似文献   

8.
纳米限域的储氢材料   总被引:1,自引:0,他引:1  
氢能作为洁净、理想的二次能源,已受到世界各国的广泛关注。然而,氢的储存技术仍然是制约氢能商业化应用的关键技术。利用储氢材料进行储氢被认为是一种安全、高效的固态储氢方式。因此,开发新型高容量的储氢材料与储氢技术成为氢能领域研究的热点之一。纳米限域是将材料填充到纳米孔道里,利用材料和纳米孔道的相互作用促进反应的进行,为化学反应提供一个独特的微环境。近年来,纳米限域逐渐发展成为改善储氢材料热力学和动力学的新方法。本文综述了纳米限域的储氢材料的研究进展,从纳米限域的储氢材料制备、储氢性能、反应机理和存在的问题等方面进行讨论,并指出了纳米限域储氢材料的发展趋势。  相似文献   

9.
刘新  吴川  吴锋  白莹 《化学进展》2015,27(9):1167-1181
实现氢能有效利用的关键技术是开发安全、经济、高效的氢能储运体系。在目前所有的储氢技术中,固态材料化学储氢因其储氢密度大、可循环使用、安全方便储运等优势成为人们关注的焦点;配位氢化物储氢材料是现有储氢材料中体积和质量储氢密度最高的储氢材料。其中,具有高储氢密度、储氢性能优良的轻金属配位氢化物储氢材料是配位氢化物储氢领域研究的重点,目前已经取得了大量成果。本文论述了主要轻金属配位氢化物储氢体系的研究进展,包括硼氢化物储氢体系、铝氢化物储氢体系、氨基化物储氢体系等,阐述和总结了其热解反应机理、动力学性能、晶体结构、最新研究现状,最后对该领域的研究方向进行了总结和展望,指出二元或多元复合储氢体系、高效纳米粒子催化剂和储氢反应环境的综合协同效应将会成为储氢领域未来的研究趋势和重要研究方向。  相似文献   

10.
稀土对LaNi3.5Co0.8Mn0.4Al0.3合金电化学及储氢特性的影响   总被引:1,自引:0,他引:1  
研究了以Ce,Nd和Pr部分替代LaNi3.5Co0.8Mn0.4Al0.3中的La后对合金电化学及储氢特性的影响。稀土含量的变化明显改变合金的电化学及储氢特性。随着Nd含量的增加,合金的放电容量降低。  相似文献   

11.
采用高能球磨法制备了3NaBH4/ErF3复合储氢材料, 并研究了其相结构和储氢性能. X射线衍射(XRD)显示, NaBH4和ErF3在球磨过程中未发生反应; 同步热分析(TG-DSC)测试结果表明, 3NaBH4/ErF3体系在420℃开始放氢, 比相同测试条件下纯NaBH4的放氢温度降低了约100℃, 放氢量为3.06%(质量分数). 压力-成分-温度(Pressure-Composition-Temperature, PCT)性能测试结果显示, 3NaBH4/ErF3复合储氢材料在较低的温度(355~413℃)及平台氢压(<1 MPa)下即拥有良好的可逆吸放氢性能, 最高可逆吸氢量可达到2.78%(质量分数), 吸氢后体系重新生成了NaBH4相. 计算得吸氢焓变仅为-36.8 kJ/mol H2; 而放氢焓变为-180.8 kJ/mol H2. NaBH4在ErF3的作用下提高了热动力学性能, 并实现了可逆吸放氢.  相似文献   

12.
镁基复合储氢材料   总被引:14,自引:0,他引:14  
镁基储氢材料以其低成本,高能量密度,引起人们的广泛关注,本文简要介绍了镁基复合储氢材料的最新进展。  相似文献   

13.
贮氢材料及其应用研究进展   总被引:1,自引:0,他引:1  
贮氢材料是一类新型高性能材料。本文对现有贮氢材料进行了合理的分类,对贮氢材料及其应用研究进展进行了综述。  相似文献   

14.
通过球磨法制备了MgH2-MoS2-PP(PP=热解聚苯胺,wMOS2=wPP=8.33%)复合材料。与纯MgH2对比研究发现,复合材料的初始放氢温度从650 K下降到550 K,并且在573 K下,75 min内的放氢量从0.38%(w/w,下同)提高到2.36%。在423 K下,放氢后产物可在40 min内吸氢2.45%,比纯MgH2高出2.13倍。放氢反应的活化能比纯MgH2(101.83 kJ·mol-1)降低了28.81 kJ·mol-1。MgH2-MoS2-PP复合材料的性能提高是由于PP能够均匀地减小Mg颗粒尺寸,并提高MoS2在体系放氢与再吸氢过程中的催化效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号