首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixing aqueous sodium dodecylsulfate with cetyltrimethylammonium bromide solutions in mole ratios close to (1.7/1.0) allows the formation of cat-anionic vesicles with an excess of negative charges on the outer surface. The vesicular dispersions are mixed with lysozyme, and interact electrostatically with the positive charges on the protein, forming lipo-plexes. Dielectric relaxation, zeta-potential, and light scattering indicate the occurrence of interactions between vesicles and the protein. According to CD, the vesicle-adsorbed protein retains its native conformation. Binding and surface saturation, inferred by dielectric relaxation and zeta-potential, fulfil a charge neutralisation stoichiometry. Adsorbed lysozyme promotes the vesicle clustering and is concomitant with the lipo-plexes flocculation. Above the charge neutralisation threshold, lysozyme in excess remains dispersed in molecular form. Attempts were made to determine in what conditions protein release from the vesicles occurs. Accordingly, the full neutralisation of sodium dodecylsulfate in excess by cetyltrimethylammonium bromide ensures the lipo-plexes break-up, the precipitation of the mixed surfactants and the protein release in native form.  相似文献   

2.
Polyethylene glycol (PEG)-modified amino acid surfactant-based vesicles were prepared to improve the stability and cellular delivery of drugs. The vesicles comprised PEG-2000, sodium N-lauroylsarcosinate hydrate (SNLS), 1-decanol, and deionized water. The complex showed vesicular structures that were almost the same as the original vesicles, and their size distribution was (100–150 nm). Transmission electron microscopy (TEM) results revealed that no fusion occurred at 1.25 wt.% PEG concentration. The steric hindrance present among the vesicles prevented aggregation of the particles. No visual phase separation was observed for 6 months at room temperature 28?ºC. At higher molar concentration of PEG, fusion and wrinkling occurred owing to the association of PEG chains. The decreasing bending curvature led to the formation of fused vesicles with multilayer structure, as revealed by TEM and differential scanning calorimetry (DSC).  相似文献   

3.
We examine the interaction of a lipid bilayer membrane with a spherical particle in solution using dissipative particle dynamics, with the aim of controlling the passage of foreign objects into and out of vesicles. Parameters are chosen such that there is a favorable adhesive interaction between the membrane and the particle. Under these conditions, the membrane wraps the particle in a process resembling phagocytosis in biological cells. We find that, for a homogeneous membrane with a uniform attraction to the particle, the membrane is unable to fully wrap the particle when the adhesion strength is below a certain value. This is observed even in the limit of zero membrane tension. When the adhesion strength is increased above the threshold value, the membrane fully wraps the particle. However, the wrapped particle remains tethered to the larger membrane. We next consider an adhesive domain, or raft, in an otherwise nonadhesive membrane. We find that, when the particle is wrapped by the raft, the line tension at the raft interface promotes fission, allowing the wrapped particle to detach from the larger membrane. This mechanism could be used to allow particles to cross a vesicle membrane.  相似文献   

4.
The sorption of Pd(II) on hydroxyapatite (Ca10(PO4)6(OH)2) has been studied at 25 °C as a function of pH, in 0.01 M NaClO4, and 0.01 and 0.025 M Ca(ClO4)2 aqueous background electrolytes and Pd(II) concentration (9.3 to 47 ??M), trying to minimize some types of reactions, such as solid dissolution of and metal precipitation. The radiotracer palladium, 109Pd, obtained by neutron irradiation, has been used to calculate the palladium??s distribution coefficients K d between aqueous and solid phase. A mathematical treatment of results has been made by ion-exchange theory in order to interpret palladium sorption onto treated solid. For this, we take into account the existence of active sites at the hydroxyapatite surface, and the aqueous solution chemistry of palladium as well as the effect of phosphate anions from solid dissolution. The results can be explained as evidence of sorption of the species PdOH+, and of a mixed hydroxo complex of Pd2+ like (XCaO?)?CPdOH+·nH2O fixed onto {??Ca?COH} surface sites of the hydroxyapatite.  相似文献   

5.
Direct formation of giant vesicles from synthetic polypeptides   总被引:2,自引:0,他引:2  
This report describes direct formation of giant vesicles from a series of poly(L-lysine)-block-poly(L-phenylalanine) (PLL-b-PPA) block copolymers from their water solution. These polymers are prepared by successive ring-opening polymerization (ROP) of the two alpha-amino acid N-carboxyanhydrides and then removing the side chain protecting groups by acidolysis. The structures of the copolymers are confirmed by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and size exclusion chromatography (SEC). The vesicles are studied by atomic force microscopy (AFM), field emission scanning electron microscopy (ESEM), and confocal laser scanning microscopy (CLSM). Rhodamine B is used as a fluorescent probe to confirm the existence of the vesicle with an aqueous interior. The vesicle size is in the range 0.55-6 microm, depending on the absolute and relative lengths of the two blocks, on initial polymer concentration, and on solution pH. The vesicles are still stable in water for 2 months after preparation. Addition of the copolymer to DNA solution results in complex formation with it. The complex assumes the morphology of irregular particles of less than 2 microm. It is expected to be used in drug and gene delivery.  相似文献   

6.
Patterned SAMs of alkanethiols on gold or silver are explored as resists for electrodeposition and exhibit surprisingly rich behavior depending on the overpotential and the length of the alkane chain. At small overpotentials, SAMs are positive resists with deposition only in the surfactant-free regions. At larger overpotentials, SAMs are negative resists with preferential deposition in the SAM-modified regions. Tunable surfactant-based resists are potentially versatile tools to dictate the deposition of materials and are demonstrated as a means of creating complex, three-dimensional structures.  相似文献   

7.
考察了酪蛋白酸钠(sodium caseinate,SC)和乳清分离蛋白(whey protein isolate,WPI)在表面性质不同的3种羟基磷灰石(hydroxyapatite,HA)颗粒上的界面吸附,分析了蛋白质的分子构型和HA颗粒的表面性质等因素对蛋白质在HA界面吸附的影响,重点讨论了SC和WPI肽链上磷酸化丝氨酸基团(phosphorylated serine residues,Ser-P)的数量和分布对吸附差异的影响.通过傅里叶变换红外光谱和表面电位分析发现SC和WPI无法被比表面积较小的HA颗粒有效吸附,但是在有效吸附面积较高的球状纳米HA和棒状微米HA上能够被吸附.Ser-P的存在使得SC在HA界面的吸附量更高、吸附能力更强.Ser-P数量和分布的不同则导致了SC中不同的蛋白组分在HA界面的竞争性吸附:β-酪蛋白在2μmHA界面始终存在优先吸附性;当纳米HA的浓度低于15 mg/mL时,纳米HA界面会优先吸附αs-酪蛋白.  相似文献   

8.
Amphiphilic beta-cyclodextrins with alkylthio chains at the primary-hydroxyl side and galactosylthio-oligo-(ethylene glycol) units at the secondary-hydroxyl side, which form nanoparticles and vesicles, show multivalent effects in their binding to lectin.  相似文献   

9.
The very rapid, usually diffusion-controlled, self-aggregation of nascent molecules of semiconductors (MX) or metals (M) in solution represents an experimental challenge for arresting the growth of the particles at a desired size. Unfortunately, the typical remedy used, namely capping of the clusters with a protective coating, alters their intrinsic electronic and optical properties. An additional defect of capping's virtue is that it prevents the observation of further cluster growth—which is especially important in the subnanometer (molecular) size regime, where particle growth is associated with dramatic changes in structure, surface states, and transition energy.

We have developed a novel method for the preparation of subnanometer size uncapped quantum dots, which also allows the monitoring of their growth up to several hundreds of nanometer in diameter. The essence of the method is the initial encapsulation of the metal ion (M+) in synthetic vesicles (liposomes) and the placement of the anion (X) in the bulk solution. Exposure of the suspension to a rectangular pulse of a high-voltage homogenous electric field E of suitable intensity and duration causes the formation of transient pores in the vesicle's bilayer (electroporation). A fraction of the metal ions that are ejected through the pores react with the anions in the bulk, and the freshly created monomers (MX) adsorb on the exterior surface of the vesicle. On the vesicle surface, the self-aggregation is slowed down to the hour and day timescales which allows for convenient spectral monitoring of the growth of the clusters.

The discussion will focus on the behavior of vesicles in an electric field, the mechanism of electroporation, and our experimental and density functional theoretical findings of previously unobserved, unusual spectroscopic properties of subnanometer size AgBr, CdS, PbS, ZnS and gold quantum dots.  相似文献   


10.
The determination of membrane-substrate profile for adherent vesicle using confocal reflectance interference contrast microscopy (C-RICM) has pushed for the need of advanced mechanics model for interpreting adhesion mechanisms. In this work, a model for vesicles or cells adhesion is established, the governing equation is derived from the variation of the potential energy at the cohesive zone. A closed-form solution is found for vesicle spontaneously adheres to a substrate when its shear modulus, micro vanishes. Based on the model and C-RICM experiments the magnitude of the adhesion force is calculated for a lipid vesicle adheres to a glass substrate.  相似文献   

11.
Monolayers of the thiolipopeptide NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-(Myr)Lys(Myr)-OH (III) were formed on gold surfaces by self-assembly, mixed with a lateral spacer of the same peptide composition, NH(2)-Cys-Ala-Ser-Ala-Ala-Ser-Ser-Ala-Pro-Ser-Ser-Lys-OH (I). Different mixing ratios were employed ranging from 0.1 to 1, corresponding to 10-100% thiolipopeptide. These self-assembled monolayers (SAMs) were then exposed to a suspension of liposomes with the aim of forming lipid bilayers as a function of the mixing ratio. A clear optimum with respect to homogeneity and electrical properties of the membranes was obtained in the middle region (0.5) of mixing ratio, as revealed by surface plasmon resonance spectroscopy, impedance spectroscopy, and fluorescence microscopy. The combination of these methods was shown to be a powerful tool, although a true lipid bilayer was not obtained. Instead, vesicle adsorption was shown to be the predominant process, and FRAP (fluorescence recovery after photobleaching) measurements showed that the films were not fluid on the micrometer length scale.  相似文献   

12.
This paper presents data on adsorption of immunogamma globulin (IgG) onto synthetic rodlike calcium hydroxyapatite particles (CaHaps) with various particle lengths and calcium/phosphate (Ca/P) atomic ratios ranging from 1.54 to 1.65 and compares the obtained results to those of acidic (bovine serum albumin, BSA), neutral (myoglobin, MGB), and basic (lysozyme, LSZ) proteins reported before. The effect of electrolyte concentration on IgG adsorption was also examined. The initial rate of IgG adsorption was similar to that of BSA and was slower than that of MGB and LSZ. This fact was interpreted by the difference in the structural stability and molecular weight of these proteins. The isotherms of IgG adsorption onto the CaHap particles were of pseudo-Langmuir type. The saturated amount of adsorbed IgG values (nsIgG) for the particles with mean particle length less than 70 nm decreased with increasing Ca/P ratio. The adsorption behavior of IgG molecules was very similar to that of basic LSZ, though IgG has zero net charge. The nsIgG value was increased with increased mean particle length of CaHaps; the relationship was less significant than that for BSA but similar to those for MGB and LSZ. The similar adsorption behavior of IgG and LSZ suggested that the Fab parts of IgG molecules preferentially adsorb onto CaHap to provide the reversed Y-shaped conformation of IgG. The change of the adsorption mode of IgG molecules from the reversed Y-shaped conformation to side-on by "spreading" the Fc part of IgG molecules onto the particle surface over a longer adsorption time was suggested. The nsIgG value was increased with increasing electrolyte concentration by screening the intra- and intermolecular electrostatic interactions of proteins.  相似文献   

13.
The use of synthetic surfactant vesicles as a means for enhancing the photoluminescence of metal chelates is illustrated and a sensitive fluorimetric determination of aluminium with quinolin-8-ol-5-sulphonic acid in vesicles of didodecyldimethylammonium bromide is given. The influence of different variables on the organized aluminium-quinolin-8-ol-5-sulphonic acid reaction is investigated and possible mechanisms of the observed enhancing effects are discussed. The limit of detection is 1 μg l?1 of aluminium. The optimized fluorimetric method has been successfully applied to the determination of aluminium in tap waters and dialysis fluids.  相似文献   

14.
15.
Electroacoustics was used to study SDS-stabilized sunflower oil-in-water emulsions, with oil volume fractions between 2% and 50%. The dynamic mobility of the oil droplets was measured; the size and electric charge on the drops were calculated using formulas derived for dilute and concentrated systems and the results were compared. The relation derived for concentrated systems appears to be valid up to at least 50% provided the particles remain within the size range of the instrument, which shifts upward with rising concentration. Conductivity and pH had little effect on particle properties in the range studied; higher oil volume fraction (φ) had a substantial influence on the particle size produced in a homogenizer, but not on the zeta potential. Both median size and spread decreased with increases in φ. In contrast, both size and charge were hardly affected at volume fractions less than 10%. Dilution of the emulsion with a surfactant solution of the same composition as the water phase changed neither the particle size nor the zeta potential. The temperature of the emulsification process had a significant influence on the particle size but the zeta potential was hardly affected. Surfactant concentration had some effect on size at low volume fractions but not for φ>10%. The electroacoustic method hence could be applied to analyze both the dilute and the concentrated emulsions directly. Copyright 2001 Academic Press.  相似文献   

16.
Adsorption of non‐ionic surfactant (ethoxylated nonyl phenol; ENP) from aqueous solution is studied at 30 °C using butyl rubber (II R) mixed with two types of carbon black: high abrasion furnace (HAF) and general purpose furnace (GPF) as fillers with different concentrations. The results indicate that butyl loaded with HAF is more efficient as adsorbent surface than that loaded with GPF irrespective of the carbon black concentration and the adsorption increases as the immersion time increases. The experimental data of adsorption isotherms could be fitted to the Langmuir equation below the critical micelle concentration (CMC) of ENP. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Two types of new never worn lenses made of hydroxyethyl methacrylate (HEMA) were treated with lecithin followed by in vitro immersion into individual protein solutions. The amount of protein absorbed onto untreated and treated lenses was compared using UV absorption spectroscopy. Basing on the results obtained a conclusion was drawn that lecithin prevented the protein adsorption onto contact lenses, and the lecithin concentration affected the amount of the sorbed protein.  相似文献   

18.
19.
The linear and non-linear viscoelastic behaviors of polymer-like micellar solutions of cetyltrimethylammonium tosilate (CTAT) with added NaOH and tetraethyl orthosilicate (TEOS) to produce precursors of mesoporous materials are studied. The effect of TEOS/CTAT (T/C) ratio at fixed CTAT concentration, CTAT concentration at fixed T/C and aging time are reported. The systems show increasingly larger deviations from near-Maxwell behavior upon increasing T/C ratio, CTAT concentration and aging. Moreover, in steady and unsteady shear-flow, shear banding develops between two critical shear rates, which tend to fade as the T/C ratio and aging increase. The Granek-Cates model is employed to analyze linear viscoelastic behavior. The Bautista-Manero-Puig (BMP) model is used here to reproduce the steady and transient nonlinear rheology of these systems. We explain these results in terms of the changes in inter-macromolecular interactions that arise out of the presence of colloidal additives in the viscoelastic gel. The ordered mesoporous materials were identified by X-ray diffractometry (XRD) and high-resolution transmission electron microscopy.  相似文献   

20.
We measured the effect of a model membrane-binding protein on line tension and morphology of phase-separated lipid-bilayer vesicles. We studied giant unilamellar vesicles composed of a cholesterol/dioleoylphosphatidylcholine/palmitoylsphingomyelin mixture and a controlled mole fraction of a Ni-chelating lipid. These vesicles exhibited two coexisting fluid-phase domains at room temperature. Owing to the line tension, σ, between the two phases, the boundary between them was pulled like a purse string so that the smaller domain formed a bud. While observing the vesicles in a microscope, histidine-tagged green fluorescent protein was added, which bound to the Ni-chelating lipid. As protein bound, the vesicle shape changed and the length of the phase boundary increased. The change in morphology was attributed to a reduction of σ between the two phases because of preferential accumulation of histidine-tagged green fluorescent protein-Ni-chelating lipid clusters at the domain boundary. Greater reductions of σ were found in samples with higher concentrations of Ni-chelating lipid; this trend provided an estimate of the binding energy at the boundary, approximately k(B)T. The results show how domain boundaries can lead to an accumulation of membrane-binding proteins at their boundaries and, in turn, how proteins can alter line tension and vesicle morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号