首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinduced shape deformation of colloidal spheres made of an amphiphilic azo polymer has been demonstrated in this work. The polymer contains the donor-and-acceptor-type azobenzene chromophores and can form uniform colloidal spheres by dropwise adding water into its THF solution. When the colloidal spheres obtained were exposed to the interfering p-polarized Ar+ laser beams (150 mW/cm2), the colloidal spheres changed to prolates (i.e., "rugby-balls"), "spindles", and finally "rods", depending on the irradiation times. The elongated direction of the spheres was observed to be the same as the polarization direction of the laser beam. The average major-to-minor ratio of the ellipsoids could be easily adjusted by controlling the irradiation time. The deformation effect observed in this work can offer a new way to prepare nonspherical colloids from colloidal spheres and will shed new light on the correlation between the photodriven shape deformation and photoinduced surface relief gratings for the same type of polymers.  相似文献   

2.
In this work, azobenzene-containing colloidal spheres have been fabricated and used to construct photoresponsive monolayers. The colloidal spheres were prepared from an amphiphilic azobenzene-containing random copolymer through hydrophobic aggregation of the polymer chains, which was induced by adding the selective solvent (H2O) into a THF solution of the polymer. The size and size distribution of the spheres depended on the initial concentration of the azo polymer in THF and the H2O/THF ratio. Adjusting those factors and optimizing other preparation conditions, uniform colloidal spheres could be obtained. Monolayers composed of hexagonally close-packed colloidal spheres were prepared by the capillary-force-driven method. The colloidal monolayers showed obvious dichroism after laser irradiation due to the photoinduced azo-chromophore orientation occurred in the spheres. The orientation order parameter was related to the irradiation time and estimated to be 0.09 at the photostationary state. The colloidal spheres and their monolayers can potentially be used as building blocks or media for reversible optical data storage, photo-switching, sensors, and other photo-driven devices.  相似文献   

3.
We have devised a facile and general methodology for the synthesis of various molecularly imprinted shells at the surface of polystyrene (PS) colloidal spheres to recognize the explosive compound 2,4,6-trinitrotoluene (TNT). PS spheres with surface-functionalized carboxyl-group layers could direct a selective imprinting polymerization on their surface through the hydrogen-bonding interactions between surface carboxyl groups and amino monomers. Meanwhile, homogeneous polymerization in the solution phase was completely prevented by stepwise polymerization. The overall process led to the formation of monodisperse molecularly imprinted core-shell microspheres, and was very successful in the preparation of organic polymer and inorganic xerogel shells. Furthermore, greater capacity and faster binding kinetics towards target species were achieved, because surface-imprinted sites ensured the complete removal of templates, good accessibility to target molecules, and low mass-transfer resistance. The results reported herein, concerning the production of high-quality molecularly imprinted products, could also form the basis for the formulation of a new strategy for the fabrication of various functional coating layers on colloidal spheres with potential applications in the fields of separations and chemical sensing.  相似文献   

4.
5.
Photosensitive cholesteric polysiloxanes, which contain an azo dye, were irradiated with linearly polarized light. The cholesteric samples were oriented in the Grandjean texture. Before irradiation they reflected circularly polarized light in the near infrared region. For perpendicular incidence, only one order of reflection was observed. Upon irradiation with linearly polarized light, which is absorbed by the azo dye, additional reflection bands appeared in the visible part of the spectrum. It turned out that the additional reflection is caused by a new Bragg type grating which shows higher reflection orders. The formation of the grating is based on the periodic deformation of the helical ordering of the molecules. The deformation is periodic, as due to photoselection, only dye molecules in equidistant layers with a suitable orientation absorb radiation. For low exposure, the grating reflects linearly polarized light. After continued irradiation, the reflection bands disappear almost completely. High birefringence, strongly dichroic dye absorption and the loss of the reflecting properties prove that a planar nematic texture has developed. The formation of this texture from the Grandjean texture is a new example for photoinduced rotational diffusion.  相似文献   

6.
Linearly polarized (LP) UV photoreaction of a photo-crosslinkable side-chain liquid-crystalline polymer (SLCP) containing photoreactive cinnamoyl and biphenyl mesogenic groups ( 1 ) was studied. The optical anisotropy of the polymer film was induced by the LP-UV photoreaction and was investigated by the temperature-controlled polarized UV absorption spectroscopy and polarized FT-IR measurements. The reorientation of the nonreacted mesogenic groups along to the Ê direction of the incident LP-UV light during the photoreaction occurred at the LC temperature range of the polymer, and the induced birefringence Δn was about 0.02. Because of the high-density photo-crosslinking, the LP-UV photoreacted film showed orientational stability up to 160°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1521–1526, 1998  相似文献   

7.
This work shows that mesoporous polymeric films with spherical and elliptical pores can be obtained by in situ structure inversion of the azo polymer colloid arrays through selective interaction with solvent. The epoxy-based azo polymer contained both the pseudo-stilbene-type azo chromophores and the hydrophilic carboxyl groups. The colloidal spheres of the azo polymer were prepared by gradual hydrophobic aggregation of the polymeric chains in THF-H2O media, induced by a steady increase in the water content. Ordered 2D arrays of the hexagonally close-packed colloidal spheres were obtained by the vertical deposition method. After the solvent (THF) annealing, the ordered 2D arrays were directly transformed to mesoporous films through the sphere-pore inversion. Under the same condition, the 2D arrays composed of the ellipsoidal colloids, which were obtained by the irradiation of a polarized Ar+ laser beam on the colloidal sphere arrays, could be transformed to films with ordered elliptical pores. To our knowledge, this is the first example to demonstrate that mesoporous structures can be directly formed from the colloidal arrays of a homopolymer through structure inversion. This observation can shed new light on the nature of self-assembly processes and provide a feasible approach to fabricate mesoporous structures without the infiltration-removal step. By exploring the photoresponsive properties of the materials, mesoporous film with special pore structure and properties can be expected.  相似文献   

8.
In this article, we have successfully demonstrated the high-throughput production of colloidal discs via magnetic stirring of aqueous dispersions of monodisperse, sulfate-stabilized polystyrene (PS) spheres in the presence of a good organic solvent. The organic solvent could be water-miscible, such as tetrahydrofuran, or water-immiscible, such as chloroform. Water-immiscible organic solvents were mixed into aqueous dispersions of PS spheres in the presence of sodium dodecyl sulfate. The geometry of the resulting discs could be easily adjusted by the magnetic stirring time and speed, the stirring bar weight, and the amount of organic solvent. Our strategy is simple, scalable, and hardly dependent on the nature of the organic solvent and the PS sphere diameter; PS spheres with diameters ranging from 200 nm to 5 μm were deformed into discs with almost 100% yield. When organic solutions of fluorescent dyes and nanoparticles were used instead of pure organic solvents for PS sphere liquefaction, fluorescent discs were obtained, underlining the effective, efficient encapsulation of the fluorescent substance in the discs.  相似文献   

9.
In this work, colloidal spheres composed of azo polymers with different chromophore loading densities were prepared, and their photoinduced deformation behavior was studied. The colloids were constructed by using a series of amphiphilic epoxy-based random copolymers containing 4-carboxylazobenzene functional groups with different degrees of functionalization (DFs). The colloidal spheres were fabricated through gradual hydrophobic aggregation of the polymeric chains in tetrahydrofuran-H2O dispersion media, which was induced by gradually adding water into the systems. The colloidal spheres were characterized by using transmission electron microscopy and dynamic light scattering. The photoinduced deformation behavior was studied by irradiating the colloidal spheres with a linearly polarized Ar+ laser beam. Results showed that the critical water content (CWC) for the colloid formation is related to the DF of the polymers, and CWC increases with the increase of DF. The hydrodynamic diameter of the colloidal spheres is also related to the DF of the polymers. When the DF of the polymers increases, the average size of the colloids gradually decreases. The hydrodynamic diameter of the colloidal spheres increases as the water dropping rate decreases. When the dropping rate is below 20 microL/s, the size of the colloidal spheres increases abruptly as the dropping rate further decreases. Upon the linearly polarized Ar+ laser beam irradiation, the colloids composed of polymers with different DFs can all be elongated along the polarization direction of the laser beam. As DF increases, the deformation degree characterized by the axial ratio (l/d) almost linearly increases. These observations can give some insight into the photoinduced deformation mechanism and can be used to construct colloids with different sizes and photoresponsive ability.  相似文献   

10.
We have studied multielectron ionization and Coulomb explosion of C2H4 irradiated by 110 fs, 800 nm laser pulses at an intensity of approximately 10(15) W/cm2. Strong anisotropic angular distributions were observed for the atomic ions Cn+(n = 1-3). Based on the results of two crossed linearly polarized laser pulses, we conclude that such anisotropic angular distributions result from dynamic alignment, in which the rising edge of the laser pulses aligns the neutral C2H4 molecules along the laser polarization direction. The angular distribution of the exploding fragments, therefore, reflects the degree of the alignment of molecules before ionization. Using the same femtosecond laser with intensity below the ionization threshold, the alignment of C2H4 molecules was also observed.  相似文献   

11.
For the application of colloidal crystal films as "photonic band gap" materials, their domain size and thickness are significant. The substrate withdrawing speed, the colloidal suspension volume fraction, and the colloidal suspension temperature have been studied for the domain size and thickness controls of colloidal crystals in this study. Stable dispersions of monodispersed polystyrene spheres with a diameter of 245 nm were synthesized according to a general emulsion polymerization for colloidal crystal films. By experimental results and the theoretical relationship between the number of layers and other parameters, we could know that the water bridge between colloidal spheres (which is formed by capillary force) influences the number of colloidal crystal layers significantly.  相似文献   

12.
Drying patterns of colloidal crystals of colloidal silica spheres coated with the brushes of zwitterionic poly(carboxymethyl betaine) (SiP-PCMB) and their parent silica spheres (SiP) were studied on a cover glass, a watch glass, and a Petri glass dish. Crystal structures kept the whole process of dryness of the suspensions of SiP-PCMB and SiP. Crystal structures of the dried films of SiP-PCMB were kept stable even when the initial suspensions contained 5 mM of sodium chloride, which is the important role of the excluded volume effects of the shells of the polymer brushes. On the other hand, crystal structures of SiP spheres in the dried films were much unstable and melted in the presence of 5 mM sodium chloride. In the suspension state, colloidal crystallization of SiP-PCMB took place stably by the contribution of the excluded volume effects besides the extended electrical double layers compared with that of SiP spheres, where only the double layer effect contributes to the crystallization. The fractal patterns of the complexation of SiP-PCMB or SiP spheres with sodium chloride were observed microscopically in the dried films. Several kinds of dissipative crystallization such as array and/or accumulation of the crystallites were observed, and the importance of the convectional and sedimentation processes during the course of dryness was demonstrated.  相似文献   

13.
 Gigantic colloidal single crystals (2–6 mm) are formed for fluorine-containing polymer spheres (120–210 nm in diameter) in exhaustively deionized aqueous suspensions. The spheres used are poly(tetrafluoroethylene) (PTFEA and PTFEB), copolymer of tetrafluoroethylene and perfluorovinylether (PFA) and copolymer of tetrafluoroethylene and perfluoropropylene (PTP). The phase diagrams of these spheres are obtained in the deionized suspensions and also in the presence of sodium chloride for PFA. The critical sphere concentrations of crystal melting (φ c) for these spheres are around 0.0006 in volume fraction, which are close to, but slightly larger than, those of monodispersed polystyrene spheres (φ c ≈ 0.00015) and colloidal silica spheres(φ c = 0.0002–0.0004) reported previously. The crystals are largest when the sphere concentrations are a bit higher than the φ c value and their size decreases as the sphere concentration increases. Reflection spectra are taken in sedimentation equilibrium as a function of the height from the bottom of the suspension. The static elastic modulus is estimated to be 10.8 and 28.7 Pa for PTFEA and PTP spheres at the sphere concentrations 0.00325 and 0.00322 in volume fraction, respectively. Received: 27 October 1999 Accepted in revised form: 16 November 1999  相似文献   

14.
A novel coloration phenomenon in a colloidal dispersion with an amphiphilic polymer was found. The dispersion consists of tetrahydrofuran (THF), an aqueous solution of sodium thiosulfate (Na(2)S(2)O(3).5H(2)O), and hydroxypropylcellulose (HPC). The dispersion was emulsified by HPC as an amphiphilic polymer, so that the aqueous phase was confined in droplets in the THF matrix. It typically appeared bluish violet at room temperature and turned into blue with increasing temperature. In this system, the refractive indices of the inside and outside of the droplet coincided at a certain wavelength at which the light passes through without scattering, which is called the Christiansen effect. The color observed was successfully simulated by Mie's scattering theory in combination with the Christiansen effect.  相似文献   

15.
On the effect of Ca2+ and La3+ on the colloidal stability of liposomes   总被引:1,自引:0,他引:1  
This work deals with the effect of Ca2+ and La3+ on the colloidal stability of phosphatidylcholine (PC) liposomes in aqueous media. As physical techniques, nephelometry, photon correlation spectroscopy, electrophoretic mobility, and surface tension were used. The theoretical predictions of the colloidal stability of liposomes were followed using the Derjaguin-Landau-Verwey-Overbeek theory. Changes in the size of liposomes and high polydispersity values were observed as La3+ concentration increases, suggesting that this cation induces the aggregation of liposomes. However, changes in polydispersity were not observed with Ca2+, suggesting a coalescence mechanism or fusion of liposomes. The stability factor (W), calculated from the nephelometry measurements indicated that aggregation/fusion occurs at a critical concentration (c.c.) of 0.3 and 0.7 M for La3+ and Ca2+, respectively. To gain a better insight into the interaction mechanism between the liposomes and the studied ions, the interaction between PC monolayers and Ca2+ and La3+ was studied. Changes in the surface area per lipid molecule (A0) in the monolayer at the c.c. values were found for both ions, with a more pronounced effect in the case of Ca2+. This corresponds with a larger reduction of the steric repulsive interaction between the headgroups at the phospholipid membrane (pi(head)). The experimental result validates the hypothesis made on the liposome fusion in the presence of Ca2+ and liposome aggregation in the presence of La3+. These aggregation mechanisms have also been confirmed by transmission electron microscopy.  相似文献   

16.
After long-term aging, surfactant-mediated colloidal aggregates of sulfonated polyaniline (S-PANI) and poly(vinylidene fluoride) (PVF2) converted into three-dimensional polymer networks, whereas colloidal crystals prepared from pure PVF2 remained unaltered. A model, where the surfactant tails anchored from the colloidal particles interdigitate with time resulting in coalescence of the particles to form the network morphology, has been proposed. X-ray photoelectron spectroscopy (XPS) revealed higher relative abundances of carbon atoms on the surface of the polymer networks than those of the colloidal aggregates, which adequately supports the proposed model.  相似文献   

17.
This article presents a new approach to building up self-adjustable invertible polymer coatings at solid surfaces. The approach is based on a two-step process. In the first step, the surface of dispersed TiO2 or silicon wafers was functionalized with the aid of a reactive copolymer, viz., poly(styrene-alt-maleic anhydride) (PSM), to which, in the second step, the chains of amphiphilic oligoester have been tethered. The latter contains both hydrophilic poly(ethylene glycol) and hydrophobic aliphatic dibasic acid moieties being alternately distributed along the oligomer chains. It is shown that the titania modified in this way can form stable suspensions in both polar (water) and nonpolar (toluene) media. Moreover, multiple drying/redispersion cycles demonstrate the ability of the modified titania particles, after their removal from one type of dispersion and consequent drying, to be redispersed in dispersing media strongly differing by polarity from that of the previous medium. An environmentally induced switching of the surface properties has been observed via the measurement of the wetting contact angles and scanning force microscopy (SFM) of silicon wafers covered by PSM with tethered oligoester chains. These experiments give strong support for the predicted capability of such polymer coatings to switch their environmental appearance (i.e., to behave as a self-adjustable invertible interface because of the ability of the tethered amphiphilic oligoester chains to change their conformations in response to environmental changes in such a manner so as to adapt and enhance their compatibility with the surrounding media).  相似文献   

18.
 Rate coefficients (k) in the colloidal crystallization of monodispersed silica spheres in the presence of sodium chloride are studied in microgravity achieved by parabolic flights of an aircraft. Time-resolved reflection spectroscopy is made with a continuous circulating-type stopped-flow cell system. The k values decrease as the salt concentration increases both at 0 and 1 G and those in microgravity are smaller than those in normal gravity by 16% (maximum), especially in water and in the presence of a small amount of the salt lower than 2 × 10−6 mol/l. The rates in flight at 1 G are larger by 15% (maximum) compared with those at 1 G on the ground. The k values obtained at 0 G, 1 G in flight and 1 G on the ground agree excellently with each other for the suspensions with 3 × 10−6 and 4 × 10−6 mol/l sodium chloride. Disappearance of the downward diffusion of spheres and no convection of the suspensions are important for retardation in microgravity. Received: 20 January 2000 Accepted: 9 March 2000  相似文献   

19.
We demonstrate a novel technique for molecular imprinting and immobilization on a surface of a polymer containing azo dyes (azopolymer). The azopolymer was found to be capable of immobilizing micrometer- and nanometer-scale macromolecules (e.g., lambda-DNA, immunoglobulin G (IgG), bacterial protease, and 1-mum polystyrene particles) through photoirradiation with blue-wavelength light. Fluorescence and atomic force microscopy studies revealed that the azopolymer surface deformed along with the shape of the macromolecules, holding them in place after photoirradiation. The desorption of the immobilized macromolecules from the azopolymer surface in an aqueous medium was observed to be very slow, on the time scale of 10 min to weeks, depending on the photoirradiation time. Immunological and enzymatic studies showed that IgG and bacterial protease immobilized on the azopolymer surface retained their original functionality. These results suggest that the azopolymer physically, not chemically, binds the macromolecules because of the increase in contact area between the macromolecules and the azopolymer surface after photoirradiation.  相似文献   

20.
The -potential and thickness of the alternate multiple adsorption layers of macrocations and macroanions on the surfaces of colloidal spheres in suspension were measured at pH values ranging from 2.8 to 10.8 via electrophoretic light-scattering measurements. Colloidal silica spheres (110 nm in diameter) were used. The macrocations used were poly(4-vinyl-N-n-butyl pyridinium bromide) (C4PVP, a strongly basic macroion) and poly (allylamine) (PAL, which is weakly basic). Sodium poly(styrene sulfonate) (NaPSS, strongly acidic) and sodium polyacrylate (NaPAA, weakly acidic) were used as macroanions. The macrocations were added first in all of the experiments. The alternate adsorption of C4PVP and NaPSS takes place for a wide range of pH values, between 2.8 and 8.7. For C4PVP + NaPAA systems, alternate layers are formed only at neutral pH values and within three to six layers. Multiple adsorption phenomena are observed at acidic and neutral pH values for PAL + NaPSS and PAL + NaPAA systems, respectively. These results strongly support the theory that the synchronous delicate balancing of the electrostatic interactions among the macrocations, the macroanions, and the colloidal spheres is important for the alternate multiple adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号