首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张修兴  李福利 《中国物理 B》2011,20(11):110302-110302
The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments.  相似文献   

2.
Advanced Encryption Standard (AES) is one of the most widely used block ciphers nowadays, and has been established as an encryption standard in 2001. Here we design AES-128 and the sample-AES (S-AES) quantum circuits for deciphering. In the quantum circuit of AES-128, we perform an affine transformation for the SubBytes part to solve the problem that the initial state of the output qubits in SubBytes is not the |0>⊗8 state. After that, we are able to encode the new round sub-key on the qubits encoding the previous round sub-key, and this improvement reduces the number of qubits used by 224 compared with Langenberg et al.’s implementation. For S-AES, a complete quantum circuit is presented with only 48 qubits, which is already within the reach of existing noisy intermediate-scale quantum computers.  相似文献   

3.
By using a six-qubit cluster state as the quantum channel, we investigat the joint remote state preparation of an arbitrary equatorial two-qubit state. We analytically obtain the fidelities of the joint remote state preparation process in noisy environments, such as the amplitude-damping noise and phase-damping noise. In our scheme, the two different noise including amplitude-damping noise and the phase-damping noise only affect the travel qubits of the quantum channel, and then we show that the fidelities in these two noisy cases only depend on the decoherence noisy rate.  相似文献   

4.
By investigating the effect of environmental perturbations on two initially coupled qubits, we find that the interactions between the qubits and between the qubits and the environment are not only the source of decoherence, but also the power of avoiding disentanglement. It is shown that there are the entangled subspaces for four kinds of different coupling ways between the qubits, in which the qubits preserve entanglement all the time. Thus, any new coherent source does not be introduced to preserve entanglement in the entangled subspaces.  相似文献   

5.
This work presents two robust quantum secure communication schemes with authentication based on Einstein-Podolsky-Rosen (EPR) pairs, which can withstand collective noises. Two users previously share an identity string representing their identities. The identity string is encoded as decoherence-free states (termed logical qubits), respectively, over the two collective noisy channels, which are used as decoy photons. By using the decoy photons, both the authentication of two users and the detection of eavesdropping were implemented. The use of logical qubits not only guaranteed the high fidelity of exchanged secret message, but also prevented the eavesdroppers to eavesdrop beneath a mask of noise.  相似文献   

6.
7.
Entanglement dynamics of two qubits from environmental perturbations with different initial conditions is investigated. The results show that the qubit-qubit interaction leads to a periodic disentanglement and entanglement. It is surprised that the sudden death of entanglement (ESD) does not happen for non-interacting qubits, but for both the cases of a pure dephasing environment and a normal environment, ESD emerges. The results may provide a useful clue to implement an entanglement quantum information.  相似文献   

8.
马鸿洋  秦国卿  范兴奎  初鹏程 《物理学报》2015,64(16):160306-160306
提出和研究了噪声情况下的量子网络直接通信. 通信过程中所有量子节点共享多粒子Greenberger-Horne-Zeilinger (GHZ)量子纠缠态; 发送节点将手中共享的GHZ态的粒子作为控制比特、传输秘密信息的粒子作为目标比特, 应用控制非门(CNOT)操作; 每个接收节点将手中共享GHZ 态的粒子作为控制比特、接收到的秘密信息粒子作为目标比特, 再次应用CNOT门操作从而获得含误码的秘密信息. 每个接收节点从秘密信息中提取部分作为检测比特串, 并将剩余的秘密信息应用奇偶校验矩阵纠正其中存在的比特翻转错误, 所有接收节点获得纠正后的秘密信息. 对协议安全、吞吐效率、通信效率等进行了分析和讨论.  相似文献   

9.
Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.  相似文献   

10.
We investigate the dynamics of entanglement through negativity and witness operators in a system of four non-interacting qubits driven by a classical phase noisy laser characterized by a classical random external field (CREF). The qubits are initially prepared in the GHZ-type and W-type states and interact with the CREF in two different qubit-field configurations, namely, common environment and independent environments in which the cases of equal and different field phase probabilities are distinguished. We find that entanglement exhibits different decaying behavior, depending on the input states of the qubits, the qubit-field coupling configuration, and field phase probabilities. On the one hand, we demonstrate that the coupling of the qubits in a common environment is an alternative and more efficient strategy to completely shield the system from the detrimental impacts of the decoherence process induced by a CREF, independent of the input state and the field phase probabilities considered. Also, we show that GHZ-type states have strong dynamics under CREF as compared to W-type states. On the other hand, we demonstrate that in the model investigated the system robustness's can be greatly improved by increasing the number of qubits constituting the system.  相似文献   

11.
We investigate in this work a quantum error correction on a five-qubits graph state used for secret sharing through five noisy channels. We describe the procedure for the five, seven and nine qubits codes. It is known that the three codes always allow error recovery if only one among the sent qubits is disturbed in the transmitting channel. However, if two qubits and more are disturbed, then the correction will depend on the used code. We compare in this paper the three codes by computing the average fidelity between the sent secret and that measured by the receivers. We will treat the case where, at most, two qubits are affected in each one of five depolarizing channels.  相似文献   

12.
We investigate in this work a quantum error correction on a five-qubits graph state used for secret sharing through five noisy channels. We describe the procedure for the five, seven and nine qubits codes. It is known that the three codes always allow error recovery if only one among the sent qubits is disturbed in the transmitting channel. However, if two qubits and more are disturbed, then the correction will depend on the used code. We compare in this paper the three codes by computing the average fidelity between the sent secret and that measured by the receivers. We will treat the case where, at most, two qubits are affected in each one of five depolarizing channels.  相似文献   

13.
Errors in quantum computers are of two kinds:sudden perturbations to isolated qubits, and slow,random drifts of all the qubits. Isolated errors can becorrected by using quantum codewords that represent a logical qubit in a redundant way, by severalphysical qubits. On the other hand, slow drifts can bereduced, but not completely eliminated, by means ofsymmetrization, namely by using many replicas of the computer, and forcing their joint quantumstate to be completely symmetric. Several symmetrizationstrategies are examined and analyzed.  相似文献   

14.
We have studied the analytical Markovian and non-Markovian dynamics of quantum correlations, such as entanglement, quantum discord and Bell nonlocalities for three noisy qubits. Quantum correlation as measured by quantum discord is found to be immune to death contrary to entanglement and Bell nonlocality for initial GHZ- or W-type mixed states.  相似文献   

15.
We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show that spatial indistinguishability of identical qubits can be utilized within the sLOCC operational framework to partially recover the quantum correlations spoiled by the environment. A general behavior emerges: the higher the spatial indistinguishability achieved via deformation, the larger the amount of recovered entanglement.  相似文献   

16.
The act of measuring optical emissions from two remote qubits can entangle them. By demanding that a photon from each qubit reaches the detectors, one can ensure that no photon was lost. But retaining both photons is rare when loss rates are high, as in Moehring et al. where 30 successes occurred per 10(9) attempts. We describe a means to exploit the low grade entanglement heralded by the detection of a lone photon: A subsequent perfect operation is quickly achieved by consuming this noisy resource. We require only two qubits per node, and can tolerate both path length variation and loss asymmetry. The impact of photon loss upon the failure rate is then linear; realistic high-loss devices can gain orders of magnitude in performance and thus support quantum computing.  相似文献   

17.
We report the realization, using nuclear magnetic resonance techniques, of the first quantum computer that reliably executes a complete algorithm in the presence of strong decoherence. The computer is based on a quantum error avoidance code that protects against a class of multiple-qubit errors. The code stores two decoherence-free logical qubits in four noisy physical qubits. The computer successfully executes Grover's search algorithm in the presence of arbitrarily strong engineered decoherence. A control computer with no decoherence protection consistently fails under the same conditions.  相似文献   

18.
Recently, it was argued that the binegativity might be a good quantifier of entanglement for two-qubit states. Like the concurrence and the negativity, the binegativity is also analytically computable quantifier for all two qubits. Based on numerical evidence, it was conjectured that it is a PPT (positive partial transposition) monotone and thus fulfills the criterion to be a good measure of entanglement. In this work, we investigate its behavior under noisy channels which indicate that the binegativity is decreasing monotonically with respect to increasing noise. We also find that the binegativity is closely connected to the negativity and has closed analytical form for arbitrary two qubits. Our study supports the conjecture that the binegativity is a monotone.  相似文献   

19.
Zhihang Xu 《中国物理 B》2022,31(4):40304-040304
We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability, utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits. Furthermore, we proceed to investigate the effects of different quantum noises (e.g., amplitude-damping, phase-damping, bit-flip and phase-flip noises) on the systems. The fidelity results of three-qubit target state are presented, which are usually used to illustrate how close the output state is to the target state. To compare the different effects between the four common types of quantum noises, the fidelities under one specific identical target state are also calculated and discussed. It is found that the fidelity of the phase-flip noisy channel drops the fastest through the four types of noisy channels, while the fidelity is found to always maintain at 1 in bit-flip noisy channel.  相似文献   

20.
曹帅  方卯发 《中国物理》2006,15(2):276-280
It has recently been shown that linear optics alone would suffice to implement efficient quantum computation. Quantum computation circuits using coherent states as the logical qubits can be constructed from very simple linear networks, conditional measurements and coherent superposition resource states. We present the quantum game under quantum noise and a proposal for implementing the noisy quantum game using only linear optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号