首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of Tb and transition metal (TM = Ni, Mn and Ti) ions co-doping on the structural, electrical and ferroelectric properties of the BiFeO3 thin films prepared by using a chemical solution deposition method were reported. From X-ray diffraction and Raman scattering analyses, distorted rhombohedral perovskite structures were observed for all thin films. Improved electrical and ferroelectric properties were observed for the co-doped thin films. Among the thin films, the lowest leakage current density of 2.67 × 10?6 A/cm2 (at 100 kV/cm), large remnant polarization (2P r ) of 82.2 μC/cm2 and low coercive field (2Ec) of 680 kV/cm (at 1,036 kV/cm) were measured for the (Tb, Mn) co-doped thin film.  相似文献   

2.
0.94Na0.5Bi0.5TiO3–0.06BaTiO3 (NBT–6BT) and (0.94 ? x)Na0.5Bi0.5TiO3–0.06BaTiO3xBiFeO3 (NBT–6BT–xBFO, x = 0.03, 0.05 and 0.08) thin films were deposited on Pt/Ti/SiO2/Si substrates by a sol–gel process. Relative permittivity and remnant polarization were maximized at 5 % BFO substitution. Compared with 0.94NBT–0.06BT, the leakage current density of 0.89NBT–0.06BT–0.05BFO at 600 kV/cm is reduced by one order of magnitude. Enhanced ferroelectricity was also achieved in 0.89NBT–0.06BT–0.05BFO, the remnant polarization (2P r) values of 0.89NBT–0.06BT–0.05BFO and 0.94NBT–0.06BT are 46 and 24 µC/cm2.  相似文献   

3.
We have evaluated the ferroelectric and electrical properties of pure BiFeO3 (BFO) and (Bi0.9Ho0.1)(Fe1?xNix)O3?δ (BHFNxO, x = 0.01, 0.02, and 0.03) thin films as frequency varying from 1 to 50 kHz on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. With the frequency from 1 to 10 kHz, the decrease of remnant polarization (2P r ) of the BHFN0.02O thin film was about 27 %, from 26 to 19 μC/cm2, which is one half lower than those of the BHFNxO (x = 0.01 and 0.03) thin films. Otherwise, the variation of the coercive electric field (2E c ) was relatively small, which were 16, 11 and 3 % for the BHFNxO (x = 0.01, 0.02, and 0.03) thin films. The remnant polarization (2P r ) and the coercive electric field (2E c ) values of the BHFN0.02O thin film show the dependence of measurement frequency and it has been fairly saturated about 30 kHz. Also, the leakage current density of the co-doped BHFN0.02O thin film showed three orders lower than that of the pure BFO, 2.14 × 10?6 Å/cm2 at 100 kV/cm.  相似文献   

4.
Ferroelectric (Bi0.9 RE 0.1)(Fe0.975Co0.025)O3-δ (RE = Eu, Tb and Ho) thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates via a chemical solution deposition method. All thin films were crystallized in a distorted rhombohedral perovskite structure confirmed by using an X-ray diffraction and a Raman scattering analyses. Compared to the pure BiFeO3 thin film, improved electrical and ferroelectric properties were observed for the co-doped thin films. Among the thin films, the lowest leakage current density of 4.28 × 10?5 A/cm2 was measured at an applied electric field of 100 kV/cm for the (Bi0.9Ho0.1)(Fe0.975Co0.025)O3-δ thin film. This value is approximately three orders lower than that of the pure BFO thin film. Furthermore, a large remnant polarization (2P r) of 60.2 μC/cm2 and a low coercive field (2E c ) of 561 kV/cm at 980 kV/cm were observed from the (Bi0.9Ho0.1)(Fe0.975Co0.025)O3-δ thin film.  相似文献   

5.
Effects of rare earth Dy and transition metal (TM = Cu, Co and Mn) ions co-doping on the structural, electrical and ferroelectric properties of the BiFeO3 thin films prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method were investigated. All thin films formed as randomly oriented polycrystalline, with no detectable impurity or secondary phases. Among the thin films, the (Bi0.9Dy0.1)(Fe0.975Mn0.025)O3 thin film exhibited well saturated hysteresis loops with remnant polarization (2P r ) of 51 μC/cm2 and low coercive electric field (2E c ) of 685 at 935 kV/cm and low leakage current density of 1.4 × 10?5 A/cm2 at 100 kV/cm. The enhanced properties observed in the co-doped thin films could be considered as being the results of the suppression of ionic defects and of the modified microstructure.  相似文献   

6.
Bismuth ferrite (BiFeO3, BFO) as a prototype multiferroic has been extensively studied in past years; however, there are several key issues not to be clearly expressed. Especially, the relationship of structure and physical properties still remains obscure. In this case, the interband electronic structure of BFO was elaborately manipulated by appropriation dopants of Ni and Gd to realize the huge saturated ferroelectric polarization in the polycrystalline films. For instance, a huge saturated polarization PS of 96?μC/cm2 and remnant polarization Pr of 91?μC/cm2 were achieved in Bi0.925Gd0.075Fe0.95Ni0.05O3 film. The results and analysis show that the alteration in the interband electronic structure and the improvement of morphology derived from the ion doping effect indeed play key roles on the improved ferroelectric property of the doped BFO films. The decreased leakage current density and thereby the enhanced ferroelectric polarization in the doped BFO films should be attributed to the decrease in both Fermi level and Urbach energy closely related with the defects, as well as the improved surface uniformity and compactness of the films. Finally, the mechanism and relationship of structure and physical properties in BFO were systemically analyzed and discussed.
The ferroelectric polarization for pure and doped BiFeO3 films
  相似文献   

7.
Ce-substituted BiFeO3 film (BCFO film) have been prepared by sol–gel process on F doped SnO2 (FTO)/glass substrates. The effects of Ce substitution on the structural and electrical properties have been reported. X-ray diffraction data confirmed the R3c structure with the elimination of all secondary phases. We observed an increase in the remnant polarization (Pr) with Ce substitution and obtained a maximum value of ∼84 μC/cm2 in 5% Ce-substituted film. The dielectric constant of the films was increased from 280 to about 420 for the BiFeO3 film and 5% Ce-substituted BCFO film, respectively and the films showed excellent dielectric loss behavior. Moreover, the leakage current was substantially reduced by the Ce substitution.  相似文献   

8.
We study the photovoltaic properties of the Pt/BiFeO3 (BFO) thin film/fluorine-doped tin oxide capacitor and obtain the open circuit voltage (V oc) of 0.44 V and short circuit photocurrent (J sc) of 0.14 mA/cm2 under purple laser illumination. As compared to the BFO film with random orientations, the BFO film with a strong preferred orientation exhibits larger photovoltaic output as a result of its larger spontaneous polarization in the unpoled state. We further demonstrate that there is remarkable influence of external electric field poling on the photovoltage in the two polycrystalline BFO films, and the larger net change of the photovoltage after positive and negative poling in the highly preferred oriented BFO film is believed to be due to its improved crystalline structure. Our experiment results indicate that the responsiveness to external electric field and photovoltaic performance of the narrow-band-gap BFO film can be optimized by structural modification, making it possible to apply in the photosensitive and other optoelectronic devices.  相似文献   

9.
A novel two‐phase polymer nanocomposite film comprising of polyvinylidene fluoride (PVDF) and nanocrystalline (~90 nm) semiconducting multiferroic BiFeO3 (BFO) have been fabricated by hot‐molding technique. Such flexible thick nanocomposite films, semicrystalline in nature, exhibited extraordinarily high effective dielectric permittivity εeff ~ 103 (compared with that of pure PVDF) near the low percolation threshold (fc = 0.12) at room temperature (RT) and the films also possessed low dielectric loss (~0.18). The polarization‐electric field (P‐E) hysteresis loops are displayed at RT, which indicate ferroelectric like behavior of PVDF still persists in the percolative nanocomposite. There is also large increase of remanent polarization of BFO in the composite indicating improvement of the multiferroic behavior of BFO embedded in the PVDF polymer. The sample also indicates good fatigue endurance. Formation of microcapacitors and percolative behavior are correlated to explain the obtained results based on the special geometry of the BFO nanofillers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
(K0.5Na0.5)NbO3 (KNN) is a promising lead-free alternative for ferroelectric thin films such as Pb(Zr,Ti)O3. One main drawback is its high leakage current density at high electric fields, which has been previously linked to alkali non-stoichiometry. This paper compares three acetate-based chemical solution synthesis and deposition methods for 0.5 mol % Mn-doped KNN film fabrication, using lower crystallization temperature processes in comparison to the sintering temperatures necessary for fabrication of KNN ceramics. This paper shows the crucial role of the A site homogenization step during solution synthesis in preserving alkali chemical homogeneity of Mn doped KNN films. Chemically homogeneous films show a uniform grain size of 80 nm and a leakage current density under 2.8×10−8 A cm−2 up to electric fields as high as 600 kV cm−1, which is the highest breakdown strength reported for KNN thin films. Solution synthesis involving two-step pyrolysis resulted in films with dense, columnar microstructures, which are interesting for orientation control and enhancement of piezoelectric properties. This study reports detailed solution synthesis and deposition processes with good dielectric, ferroelectric and breakdown field properties. An optimized fabrication method that should couple low leakage current density with dense and oriented microstructures is proposed.  相似文献   

11.
The effects of lithium and tantalum doping on the properties of Na0.5K0.5NbO3 (NKN) thin films were investigated. The films were fabricated by an optimized chelate route which offers the advantage of a simple and rapid solution synthesis. The optimization was achieved by investigating the effects of alkaline volatilization loss on film properties. In this way, undoped NKN thin films fabricated by this conventional method exhibited good ferroelectric properties (Pr ~ 8 μC/cm2, and Ec ~ 55 kV/cm for films annealed at 650 °C). The developed chelate route was then used to grow Li (5 %) and Ta (10 %) substituted thin films. Such structures allowed us to compare the effect of these dopant cations on phase formation, microstructure and ferroelectric properties. We show that both modifications produced a remarkable improvement on the ferroelectricity of the films. While the undoped material exhibited large leakage components in films annealed at 600 °C, films modified with Li or Ta presented well saturated ferroelectric hysteresis loops, indicating that those ions have a significant influence on the conducting process. The remnant polarizations of the Ta-doped films are greater than those of the Li-doped samples. This feature is however reversed for films annealed at low temperature (600 °C) due to the presence of a non-ferroelectric secondary phase in the Ta-doped composition.  相似文献   

12.
We prepared BiFe1−x Ti x O3+δ (BFTO) films by sol gel process and various oriented films were deposited on LaNiO3 coated SiO2/Si substrates with different x. The effects of Ti substitution on dielectric, ferroelectric, magnetic and leakage conduction properties in BFTO system have been studied. Enhanced ferroelectricity was observed at room temperature due to the substitution of Ti. The largest double remnant polarization of 3.8 μC/cm2 was acquired in the film with x = 0.10. Further more, it was observed that the dielectric constants were also enhanced by the substitution of Ti. The film with x = 0.10 has the largest dielectric constant below 100 kHz and Debye-like relaxation were observed in the films with x = 0.05 and 0.10. The leakage conduction was reduced with the increasing of the content of Ti. More over, the magnetism was also altered by the substitution.  相似文献   

13.
A novel silicon-based PbTiO3/Pb(Zr,Ti)O3/PbTiO3 (PT/PZT/PT) sandwich structure has been prepared using a sol-gel method. The annealing temperature is greatly reduced compared with those structures without PT layers. Capacitance-voltage (C-V), leakage current-voltage (I-V), polarization-field (P-E), dielectric-frequency response and polarization fatigue of the sandwich structure are examined. The relative dielectric constant, the coercive field and the remanent polarization of the PZT films are measured to be about 900, 18 kV/cm and 16 C/cm2 respectively. The current density is less than 5 × 10–9 A/cm2 below 200 kV/cm. The dielectric constant of the structure remains constant at low frequency, and decreases to some degree at high frequency. The retained polarization does not change significantly after 8 × 109 read/write cycles. The PZT films are proved to have very good dielectric and ferroelectric properties. The new PT/PZT/PT sandwich structure can be valuable for memory devices and other applications.  相似文献   

14.
Impurity free monophasic rhombohedral BiFeO3 (BFO) nanoparticles are synthesized by sol?Cgel method. Effect of processing technique and particle size are found to influence the dielectric, ferroelectric, magnetic and leakage behavior of BFO ceramic prepared by sol?Cgel as well as conventional solid state reaction route. From XRD analysis it is observed that bulk BFO sample showed rhombohedral structure (R3c) along with other impurity phases, which become suppressed with the decrease of particles size to few nanometers. The dielectric behavior and leakage current characteristic of the samples were improved significantly in nanoparticles of BFO. Ferroelectric hysteresis loops of sintered bulk BFO ceramic is found to change its shape from semi elliptical lossy P?CE features to a typical ferroelectric feature with improved remnant and saturation polarization value for the particle size down to nanometer scale. Furthermore, BFO nanoparticles also showed a good ferromagnetic M?CH hysteresis loop with enhanced saturation magnetization value of 0.138?emu/mg.  相似文献   

15.
Highly preferentially oriented polycrystalline BiFeO3 thin film was grown on FTO/glass substrate by a sol–gel method annealed at 500 °C. XRD result showed that the film adopts highly (100) preferential orientation. SEM results indicate that the film is composed of large grains of 40–200 nm and the thickness is about 320 nm. Room temperature saturated polarization and large Pr ~55 μC/cm2 were obtained. Leakage current was substantially reduced by the controlling of ferroelectric polarization. Polarization-modulated conduction mechanism was studied. Moreover, substantial photovoltaic effect was observed.  相似文献   

16.
Lead zirconate titanate (PZT) thin films with a Zr/Ti ratio of 57/43, elaborated by a derived sol–gel process, have been deposited onto bare and RuO2 coated aluminium substrate 16 μm thick. Commercial aluminium foil presents many advantages as ultra light weight (43 g m?2), conformability, conduction, can be easily cut, and is one of the cheapest substrates used for PZT thin films deposition (<0.1$ m-2). XRD measurements have shown a well crystallized PZT in the perovskite structure and ferroelectric behaviour has also been observed. By the use of a RuO2 film 100 nm thick at the PZT/aluminium interface, the coercive field and tunability values have been strongly improved despite an increase of the dielectric losses. The lead excess introduced in the precursor solution has been increased up to 65 % in order to lower the crystallization temperature of the PZT around 560 °C and tunability has been studied as a function of annealing time and temperature.  相似文献   

17.
A series of high quality Bi3.15Nd0.85TiO3 (BNT) ferroelectric thin films and La0.7Ca0.3MnO3/Bi3.15Nd0.85TiO3 (LCMO/BNT) multiferroic composite thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by chemical solution deposition (CSD) method. The microstructure, surface morphology and leakage mechanisms of BNT and LCMO/BNT composite films were revealed by X-ray diffraction, scanning electron microscopy and semiconductor device analyzer, respectively. Ferroelectric behavior along with a remnant polarization (2Pr) of 20 μC/cm2, saturated magnetization around 56 emu/cm3 and magnetoelectric effect (ME) voltage coefficient αME of 33 mV/cm Oe at 1 kHz for LCMO/BNT composite films were obtained at room temperature, indicating that the coupling effects of electric and magnetic field exist in the fabricated LCMO/BNT multiferroic composite thin films. And our observations provide an effective way to manipulate the conduction behavior and push forward understanding the leakage mechanism in LCMO/BNT composite films.  相似文献   

18.
In this paper, high-k titanium–aluminum oxide (ATO) dielectric film has been realized by using organic–inorganic hybrid precursor solution. X-ray diffraction pattern revealed that the ATO films (Ti content less than 67 at%) remain amorphous phase for annealing treatment at 400 °C. And all of the amorphous ATO films had very smooth and uniform surface with root mean square (RMS) roughness of less than 0.5 nm. Meanwhile, the results showed that the ATO film (Ti:Al = 1:8) had the best performance, including RMS roughness of 0.33 nm, relative permittivity of 15, and leakage current density of 1.41 × 10?6 A/cm2 at 1 MV/cm.  相似文献   

19.
Bi1−x Ce x FeO3 (x = 0, 0.05, 0.1, 0.15 and 0.20) (BCFO) thin films were deposited on Pt/TiN/Si3N4/Si substrates by sol–gel technique. Crystal structures, surface chemical compositions and bonding states of BCFO films were investigated by X-ray diffraction and X-ray photoelectron spectroscopy (XPS), respectively. Compared to BiFeO3 (BFO) counterparts, the fitted XPS narrow-scan spectra of Bi 4f7/2, Bi 4f5/2, Fe 2p3/2, Fe 2p1/2 and O 1s peaks for Bi0.8Ce0.2FeO3 film shift towards higher binding energy regions by amounts of 0.33, 0.29, 0.43, 0.58 and 0.49 eV, respectively. Dielectric constants and loss tangents of the BCFO (x = 0, 0.1 and 0.2) film capacitors are 159, 131, 116, 0.048, 0.041 and 0.035 at 1 MHz, respectively. Bi0.8Ce0.2FeO3 film has a higher remnant polarization (P r = 2.04 μC/cm2) than that of the BFO (P r = 1.08 μC/cm2) at 388 kV/cm. Leakage current density of the Bi0.8Ce0.2FeO3 capacitor is 1.47 × 10−4 A/cm2 at 388 kV/cm, which is about two orders of magnitude lower than that of the BFO counterpart. Furthermore, Ce cations are feasibly substituted for Bi3+ in the Bi0.8Ce0.2FeO3 matrix, possibly resulting in the enhanced ferroelectric properties for the decreased grain sizes and the reduced oxygen vacancies.  相似文献   

20.
Lead zirconate titanate (PZT) thin films were deposited on Pt/Ti/SiO2/Si and interlayer/Pt/Ti/SiO2/Si substrate by radio frequency (r.f.) magnetron sputtering with a Pb1.1Zr0.53Ti0.47O3 target. The crystallization of the PZT thin films was formed only by substrate temperature. When interlayer (PbO/TiO2) was inserted between the PZT thin film and the Pt electrode, the grain growth and processing temperature of the PZT thin films were considerably improved. Compared to PZT/Pt structure, the dielectric constant and polarization properties of the PZT/interlayer/Pt structure were fairly improved. In particular, PZT/interlayer/Pt at the substrate temperature of 400 °C showed prevalent ferroelectric properties (r=475.97, tanδ=0.0591, Pr=23 μC/cm2). As a result of an X-ray photoelectron spectroscopy (XPS) depth-profile analysis, it was found that PZT/interlayer/Pt deposited only by substrate temperature without the post-annealing process via r.f. magnetron sputtering method remained independent of each other regardless of substrate temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号