首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with some qualitative analysis for a coupled system of five reaction–diffusion equations which arises from a physiology model. The uniform boundedness of the time-dependent solution is obtained under various boundary conditions. Sufficient conditions are also given to ensure the asymptotic stability of the non-negative steady-state solutions under Dirichlet or Robin boundary condition for each component. Under homogeneous Neumann boundary condition for some components the time-dependent solution is proven to converge to a constant steady state determined by the initial functions.  相似文献   

2.
本文研究一类带耦合项的化学反应扩散方程组解的性态,利用上下解理论证得解的存在性,然后在一定的参数环境下考虑了相应的奇摄动问题,并给出一致有效的渐近解.  相似文献   

3.
This paper presents a qualitative analysis for a coupled system of two reaction-diffusion equations under various boundary conditions which arises from a number of physical problems. The nonlinear reaction functions are classified into three basic types according to their relative quasi-monotone property. For each type of reaction functions, an existence-comparison theorem, in terms of upper and lower solutions, is established for the time-dependent system as well as some boundary value problems. Three concrete physical systems arising from epidemics, biochemistry and engineering are taken as representatives of the basic types of reacting problems. Through suitable construction of upper and lower solutions, various qualitative properties of the solution for each system are obtained. These include the existence and bounds of time-dependent solutions, asymptotic behavior of the solution, stability and instability of nontrivial steady-state solutions, estimates of stability regions, and finally the blowing-up property of the solution. Special attention is given to the homogeneous Neumann boundary condition.  相似文献   

4.
In this paper we find a possible continuation for quenching solutions to a system of heat equations coupled at the boundary condition. This system exhibits simultaneous and non-simultaneous quenching. For non-simultaneous quenching our continuation is a solution of a parabolic problem with Neumann boundary conditions. We also give some results for simultaneous quenching and present some numerical experiments that suggest that the approximations are not uniformly bounded in this case.  相似文献   

5.
Some coupled reaction-diffusion systems arising from chemical diffusion processes and combustion theory are analyzed. This analysis includes the existence and uniqueness of positive time-dependent solutions, upper and lower bounds of the solution, asymptotic behavior and invariant sets, and the stability of steady-state solutions, including an estimate of the stability region. Explicit conditions for the asymptotic behavior and the stability of a steady-state solution are given. These conditions establish some interrelationship among the physical parameters of the diffusion medium, the reaction mechanism, the initial function and the type of boundary condition. Under the same set of physical parameters and reaction function, a comparison between the Neumann type and Dirichlet or third type boundary condition exhibits quite different asymptotic behavior of the solution. For the general nonhomogeneous system, multiple steady-state solutions may exist and only local stability results are obtained. However, for certain models it is possible to obtain global stability of a steady-state solution by either increasing the diffusion coefficients or decreasing the size of the diffusion medium. This fact is demonstrated by a one-dimensional tubular reactor model commonly discussed in the literature.  相似文献   

6.
The narrow escape problem consists in deriving the asymptotic expansion of the solution of a drift-diffusion equation with the Dirichlet boundary condition on a small absorbing part of the boundary and the Neumann boundary condition on the remaining reflecting boundaries. Using layer potential techniques, we rigorously find high-order asymptotic expansions of such solutions. The asymptotic formula explicitly exhibits the nonlinear interaction of many small absorbing targets. Based on the asymptotic theory for eigenvalue problems developed in Ammari et al. (2009) [3], we also construct high-order asymptotic formulas for the perturbation of eigenvalues of the Laplace and the drifted Laplace operators for mixed boundary conditions on large and small pieces of the boundary.  相似文献   

7.
We study a Penrose-Fife phase transition model coupled with homogeneous Neumann boundary conditions. Improving previous results, we show that the initial value problem for this model admits a unique solution under weak conditions on the initial data. Moreover, we prove asymptotic regularization properties of weak solutions.  相似文献   

8.
This paper is concerned with three 3-species time-delayed Lotka-Volterra reaction-diffusion systems and their corresponding ordinary differential systems without diffusion. The time delays may be discrete or continuous, and the boundary conditions for the reaction-diffusion systems are of Neumann type. The goal of the paper is to obtain some simple and easily verifiable conditions for the existence and global asymptotic stability of a positive steady-state solution for each of the three model problems. These conditions involve only the reaction rate constants and are independent of the diffusion effect and time delays. The result of global asymptotic stability implies that each of the three model systems coexists, is permanent, and the trivial and all semitrivial solutions are unstable. Our approach to the problem is based on the method of upper and lower solutions for a more general reaction-diffusion system which gives a common framework for the 3-species model problems. Some global stability results for the 2-species competition and prey-predator reaction-diffusion systems are included in the discussion.  相似文献   

9.
In the Lotka–Volterra competition system with N-competing species if the effect of dispersion and time-delays are both taken into consideration, then the densities of the competing species are governed by a coupled system of reaction–diffusion equations with time-delays. The aim of this paper is to investigate the asymptotic behavior of the time-dependent solution in relation to a positive uniform solution of the corresponding steady-state problem in a bounded domain with Neumann boundary condition, including the existence and uniqueness of a positive steady-state solution. A simple and easily verifiable condition is given to the competing rate constants to ensure the global asymptotic stability of the positive steady-state solution. This result leads to the permanence of the competing system, the instability of the trivial and all forms of semitrivial solutions, and the nonexistence of nonuniform steady-state solution. The condition for the global asymptotic stability is independent of diffusion and time-delays, and the conclusions for the reaction–diffusion system are directly applicable to the corresponding ordinary differential system.  相似文献   

10.
In the mutualism system with three species if the effects of dispersion and time delays are both taken into consideration, then the densities of the cooperating species are governed by a coupled system of reaction–diffusion equations with time delays. The aim of this paper is to investigate the asymptotic behavior of the time-dependent solution in relation to a positive uniform solution of the corresponding steady-state problem in a bounded domain with Neumann boundary condition, including the existence and uniqueness of a positive steady-state solution. A simple and easily verifiable condition is given to ensure the global asymptotic stability of the positive steady-state solution. This result leads to the permanence of the mutualism system, the instability of the trivial and all forms of semitrivial solutions, and the nonexistence of nonuniform steady-state solution. The condition for the global asymptotic stability is independent of diffusion and time-delays as well as the net birth rate of species, and the conclusions for the reaction–diffusion system are directly applicable to the corresponding ordinary differential system and 2-species cooperating reaction–diffusion systems. Our approach to the problem is based on inequality skill and the method of upper and lower solutions for a more general reaction–diffusion system. Finally, the numerical simulation is given to illustrate our results.  相似文献   

11.
This article deals with approximation of solutions of the Neumann problem in domains, where small tubes are cut out. With an increasing number of tubes some kind of a porous layer inside the domain is approximated. Our aim is to find an asymptotic solution for the separated limit domains. We show that this asymptotics is described by a boundary value problem for the two limit domains, where the solutions for each domain are connected by the boundary conditions.  相似文献   

12.
This paper is concerned with a class of quasilinear parabolic and elliptic equations in a bounded domain with both Dirichlet and nonlinear Neumann boundary conditions. The equation under consideration may be degenerate or singular depending on the property of the diffusion coefficient. The consideration of the class of equations is motivated by some heat-transfer problems where the heat capacity and thermal conductivity are both temperature dependent. The aim of the paper is to show the existence and uniqueness of a global time-dependent solution of the parabolic problem, existence of maximal and minimal steady-state solutions of the elliptic problem, including conditions for the uniqueness of a solution, and the asymptotic behavior of the time-dependent solution in relation to the steady-state solutions. Applications are given to some heat-transfer problems and an extended logistic reaction–diffusion equation.  相似文献   

13.
The paper deals with three-dimensional mixed boundary value problem of the anisotropic elasticity theory when the elastic body under consideration has a cut in the form of an arbitrary non-closed, two-dimensional, smooth surface with a smooth boundary: on one side of the cut surface the Dirichlet type condition (i.e., the displacement vector) is given, while on the other side the Neumann type condition (i.e., the stress vector) is prescribed. Applying the potential method and invoking the theory of ΨDEs uniqueness, existence and regularity results are proved in various function spaces. The asymptotic expansion of the solution of the corresponding system of boundary ΨDEs is written.  相似文献   

14.
The coexistence and stability of the population densities of two competing species in a bounded habitat are investigated in the present paper, where the effect of dispersion (transportation) is taken into consideration. The mathematical problem involves a coupled system of Lotka-Volterra-type reaction-diffusion equations together with some initial and boundary conditions, including the Dirichlet, Neumann and third type. Necessary and sufficient conditions for the coexistence and competitive exclusion are established and the effect of diffusion is explicitly given. For the stability problem, general criteria for the stability and instability of a steady-state solution are established and then applied to various situations depending on the relative magnitude among the physical parameters. Also given are necessary and sufficient conditions for the existence of multiple steady-state solutions and the stability or instability of each of these solutions. Special attention is given to the Neumann boundary condition with respect to which some threshold results for the coexistence and stability or instability of the four uniform steady states are characterized. It is shown in this situation that only one of the four constant steady states is asymptotically stable while the remaining three are unstable. The stability or instability of these states depends solely on the relative magnitude among the various rate constants and is independent of the diffusion coefficients.  相似文献   

15.
This paper is concerned with a time-delayed Lotka–Volterra competition reaction–diffusion system with homogeneous Neumann boundary conditions. Some explicit and easily verifiable conditions are obtained for the global asymptotic stability of all forms of nonnegative semitrivial constant steady-state solutions. These conditions involve only the competing rate constants and are independent of the diffusion–convection and time delays. The result of global asymptotic stability implies the nonexistence of positive steady-state solutions, and gives some extinction results of the competing species in the ecological sense. The instability of the trivial steady-state solution is also shown.  相似文献   

16.
汤燕斌  罗琳 《应用数学》2003,16(4):71-75
本文讨论了一类周期竞争扩散系统,给出了诺依曼边界条件下周期竞争扩散系统的周期解唯一的充分条件,并讨论了对应周期竞争扩散系统初边值问题解的渐近性态.  相似文献   

17.
In this paper we carry on the study of asymptotic behavior of some solutions to a singularly perturbed problem with mixed Dirichlet and Neumann boundary conditions, started in the first paper [J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Existence results, Arch. Ration. Mech. Anal., in press]. Here we are mainly interested in the analysis of the location and shape of least energy solutions when the singular perturbation parameter tends to zero. We show that in many cases they coincide with the new solutions produced in [J. Garcia Azorero, A. Malchiodi, L. Montoro, I. Peral, Concentration of solutions for some singularly perturbed mixed problems: Existence results, Arch. Ration. Mech. Anal., in press].  相似文献   

18.
Summary In the well-known Volterra-Lotka model concerning two competing species with diffusion, the densities of the species are governed by a coupled system of reaction diffusion equations. The aim of this paper is to present an iterative scheme for the steady state solutions of a finite difference system which corresponds to the coupled nonlinear boundary value problems. This iterative scheme is based on the method of upper-lower solutions which leads to two monotone sequences from some uncoupled linear systems. It is shown that each of the two sequences converges to a nontrivial solution of the discrete equations. The model under consideration may have one, two or three nonzero solutions and each of these solutions can be computed by a suitable choice of initial iteration. Numerical results are given for these solutions under both the Dirichlet boundary condition and the mixed type boundary condition.  相似文献   

19.
This paper deals with a system of reaction-diffusion equations modeling a chemical reaction process involving three substances. The mathematical system consists of three semilinear partial differential equations of parabolic type with homogenous Neumann boundary conditions. The goal is to determine whether each substance has a positive asymptotic limit by the method of upper and lower solutions.  相似文献   

20.
研究了一类具有无穷时滞竞争扩散模型的周期解问题,采用了上下解的方法,获得了周期解的存在唯一性,并给出了解的渐近性态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号