首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational isomerizations of radical-ions are studied both experimentally and theoretically- The representative systems of stilbenes, polyenes, and non-planar alicyclic compounds will be reviewed first. Then, the result of the study on the radical-cations of 1,4-dithiacyclohexane and ethane-1,4-dithiol will be presented. It is found that the former cation suffers a change from a chair fore to a boat form and the latter from an anti- or a gauche-form to a cis form even in a rigid matrix. The conformational changes are manifested by drastic changes in the electronic absorption and ESR spectra- The strong “through-space” interaction between the lone pair orbitals of the sulfur atoms is responsible for the conformational changes. Ab initio óó'O calculations lend support to the analysis of the experimental results.  相似文献   

2.
Fourier transform Raman spectra are presented for the cis-1,4 and trans-1,4 isomers of polyisoprenes Vibrational intensities are used to determine quantitatively the amounts of each isomer in the microstructure. Improvements over previous work are suggested for the quantitative assessment of 1,4 microstructure. Also, changes in the Raman spectrum due to oxidative degradation show that preferential oxidative degradation for the vinyl-3,4 units occurs. The α and β forms of trans-1,4 polyisoprene were studied the ν(CC) bands resolved were identified 4 cm−1 apart. A study of the copolymerization of methyl methacrylate with isoprene showed that the 1,4 form is the most favoured form produced on copolymerization. Accurate cis-1,4 and trans-1,4 microstructural information could not, however, be determined.  相似文献   

3.
The thermochemistry and kinetics of the initiation reactions involved in the oxidation of unsaturated fuels are explored. The thermochemistry of intermediate radicals, diradicals, and molecular species involved are estimated using group additivity with some assistance from bond additivity. Kinetic parameters are estimated with the techniques of thermochemical kinetics. In the case of acetylene, estimated rate constants are in excellent agreement with experimental results on the induction period and flame speed. It is shown that the route initiated by O2 addition to an unsaturated carbon atom to produce a 1,4 diradical is faster than any other path available to form radicals capable of propagating a chain. The 1,4 diradicals so produced can generally cyclize to form a dioxetane which exothermically opens to a dialdehyde which is the ultimate radical source. Below 1000 K unsaturates will always initiate oxidation faster than saturated fuels. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
A film forming polyester was obtained from the title compound and 1,4-butanediol. In addition oxidation of the title compound gave rise to 7,8-dicarbomethoxy-7,8-diphenylquinodimethane as a mixture of Z and E isomers. The 1H-NMR and the electronic characterization of this polymer are discussed. The quinodimethane will undergo 1,6-nucleophilic addition to form an aromatic compound.  相似文献   

5.
The purpose of this review is to provide an update on our work based on the 1,4-bis(3-aminopropyl)piperazine skeleton and how it allowed our group to validate a new target. After a brief introduction where we will relate the way this substructure was introduced in our 4-aminoquinolinyl derivatives, we will present first the different libraries synthesized around this moiety: (1) libraries of sulfonamides, amides and amines derived from 4-aminoquinolines and, (2) libraries where the 4-aminoquinoline nucleus is replaced. High throughput evaluation of biological activity and physicochemical parameters will be presented. The evaluation of the anti-malarial activity of the compounds will be discussed in the light of a chloroquine-like mechanism (accumulation in the acidic food vacuole and inhibition of beta-hematin formation). In a second part we will present active 1,4-bis(3-aminopropyl)piperazine as tools for identification and/or validation of new antimalarial targets. Fluorescence assays on some derivatives show that they are surprisingly localized outside the food vacuole, suggesting the existence of other target(s). Secondly, we will present a library of 1,4-bis(3-aminopropyl)piperazine as inhibitors of the cytosolic aminopeptidase Pfa-M1, a new potential target for antimalarials.  相似文献   

6.
The unimolecular reactions of protonated and metalated polyglycols with kiloelectronvolt translational energies have been studied by collisionally activated dissociation and neutralization-reionization mass spectrometry. The former method provides information on the ionic dissociation products, whereas the latter allows for the identification of the complementary neutral losses. Protonated linear polyglycols mainly undergo charge-initiated decompositions that lead to eliminations of smaller oligomers. On the other hand, protonated crown ethers (“cyclic” polyglycols) favor charge-induced reactions that proceed by cleavages of two ethylene oxide units in the form of 1,4-dioxane. Replacement of one O by NH in the crown ether dramatically changes its unimolecular chemistry; now, charge-remote 1,4-eliminations from ring-opened isomers are preferred. Charge-remote reactions are also the major decomposition channels of all metalated precursors studied. The linear polyglycols decompose primarily by 1,4-H2 eliminations and to a lesser extent by homolytic cleavages near chain ends. The reverse is true for metalated crown ethers, which preferentially produce distonic radical cations by the loss of saturated radicals; these reactions are proposed to involve prior rearrangement to open-chain isomers. The nature of the metal ion (Li+, Na+, or K+) does not greatly affect the unimolecular chemistry of the cationized polyglycol. In general, metalated precursors form many abundant fragment ions over the entire mass range; hence, collisional activation of such ions at high kinetic energy should be particularly useful for structure elucidations.  相似文献   

7.
Experimental and semiempirical calculations were carried out to study the reactivity of dialkylcadmium reagents addition to α,β-enones. It was demonstrated that α,β-enone such as benzoquinone with low lying LUMO energy reacts via single electron transfer (SET) mechanism with the formation of the 1,2 or 1,4-type alkyl addition product depending on the reaction temperature and substrate structure. Site and chemoselectivity in unsymmetrical benzoquinone derivatives are determined by the stability of the cadmium coordinated semienone complex intermediates and the carbon spin densities of these reactive species respectively. On the other hand, by increasing the LUMO energy of α,β-enone system, the reaction mechanism changes from SET to polar addition affording the 1,4-type alkyl addition product. The establishment of a correlation scale between substrate LUMO energies and reaction mechanism presented in this article will be discussed.  相似文献   

8.
1,4-Dioxane is a flammable liquid and tends to form explosive peroxides. Its formation in glycols (low parts-per-million levels), which are used as dehumidifying agents in refineries, may take place by condensation. 1,4-Dioxane thus formed gets distilled over with benzene in the refinery process. Therefore, it is necessary to identify and determine the levels of 1,4-dioxane in glycols as well as benzene. Gas chromatography (GC) is probably the best technique for this purpose. GC analysis may be carried out using a flame ionization detector. Results show that 1,4-dioxane can be comfortably determined down to 2 ppm in glycols and benzene.  相似文献   

9.
The ground and first triplet excited-state potential energy surfaces of the [2 + 2]-cycloadditions of 2-cyclohexenone, methyl acrylate, and methyl crotonate to ethylene have been studied by means of CASSCF and DFT-B3LYP calculations. The attack of ethylene to the (3)(pi-pi) alpha,beta-unsaturated carbonyl compound leads to the formation of a triplet 1,4-biradical intermediate that evolves to the ground-state potential energy surface. The outcome of the reaction is governed by the competition between the deactivation of the (3)(pi-pi) alpha,beta-unsaturated carbonyl compound itself and its reaction with ethylene to form the triplet 1,4-biradical. For 2-cyclohexenone, the potential energy barrier corresponding to the formation of the biradical intermediate is lower than for the acyclic systems. On the other hand, the energy necessary to reach the crossing point between the (3)(pi-pi) and the ground-state potential energy surfaces is lower for the acyclic systems than for 2-cyclohexenone. For methyl acrylate and methyl crotonate, the decay of the (3)(pi-pi) state of the isolated molecule is therefore expected to be faster than the formation of the 1,4-biradical, so that the [2 + 2]-cycloaddition will not take place. However, for 2-cyclohexenone the formation of the triplet 1,4-biradical is favorable, and the process will lead to the formation of the corresponding cyclobutane derivative.  相似文献   

10.
A thorough understanding of the oxidation chemistry of cycloalkanes is integral to the development of alternative fuels and improving current fuel performance. An important class of reactions essential to this chemistry is the hydrogen migration; however, they have largely been omitted from the literature for cycloalkanes. The present work investigates all of the hydrogen migration reactions available to methylcyclopentane, ethylcyclopentane, methylcyclohexane, and ethylcyclohexane. The kinetic and thermodynamic parameters have been studied by a combination of computational methods and compared to their corresponding n-alkyl and methylalkyl counterparts to determine the effect that the cycloalkane ring has on these reactions. In particular, although the alkylcycloalkyl activation energies for the dominant 1,4, 1,5, and 1,6?H-migration are higher than in n-alkyl and methylalkyl radicals, because several of the rotors needed to form the transition state are locked into place as part of the cycloalkane ring, the A-factors are higher for the alkylcycloalkyl reactions, making the rates closer to the noncyclic systems, at higher temperatures. The results presented here suggest that the relative importance of each H-migration pathway differs from the trends predicted by either the n-alkyl or methylalkyl radical systems. Of particular interest is the observation that since the barrier height of the 1,4?H-migration is only 3-5?kcal?mol(-1) higher than the 1,5?H-migration in the methyl and ethylcycloalkyl radicals, compared to a difference of roughly 7?kcal?mol(-1) in similar reactions for both the n-alkyl and methylalkyl radicals, the 1,4 H-migrations in alkylcycloalkyl radicals will be more important in the overall mechanism than would be predicted based on the n-alkyl and methylalkyl radicals. These results have important combustion model implications, particularly for fuels with high cycloalkane content.  相似文献   

11.
Reaction of acetylides with aldehydes to form but-2-yne-1,4-diols, followed by triple bond reduction and oxidation of the hydroxyl groups, gives 1,4-diketones; these react with vinyllithium, and the resulting diols undergo ring-closing metathesis to form 2-cyclohexene-1,4-diols. Dehydration, usually by acid treatment, then gives benzenes carrying substituents in a 1,4 relationship. Use of substituted vinyllithiums provides further substitution on the final benzene rings. The method can be applied to the synthesis of C5-aryl carbohydrates.  相似文献   

12.
In the interaction of cyclohexa-1,4-diene (1,4-CHD) with a mixture of biphenyl and metallic lithium or sodium in THF at 20 °C, three processes occur, viz., disproportionation of 1,4-CHD to form benzene and cyclohexene, dehydrogenation of 1,4-CHD to form benzene and molecular hydrogen, and dehydrogenation of 1,4-CHD to form benzene and lithium or sodium hydride. In the case of lithium on the use of an equimolar amount of biphenyl, the isomerization of 1,4-CHD to cyclohexa-1,3-diene is also observed. When the molar ratio Li(Na): Ph2 increases from 1 : 1 to 2 : 1, i.e., when the reaction is carried out in the presence of an alkali metal solid phase, the overall conversion of 1,4-CHD into benzene and cyclohexene increases. The use of mixtures of lithium and sodium leads to acceleration of the processes of the formation of benzene and cyclohexene. The possible mechanism of the synergistic effect found is discussed.  相似文献   

13.
In chemical research attention is increasingly being focussed on composite “complex” systems with special properties and functions. As components of such systems 1,4-diazines are steadily gaining in popularity. Here, 1,4-diazines means pyrazine and its derivatives as well as compounds with partial pyrazine structure; examples are quinoxaline, phenazine, pteridine, flavin and their derivatives. All these compounds are characterized by a low lying unoccupied π-molecular orbital and by the ability to act as bridging ligand. Due to these two properties 1,4-diazines, and especially their parent compound pyrazine, possess a characteristic reactivity. 1,4-Diazines may be employed to study inter- and intramolecular electron transfer in organic, inorganic and biochemical reactions. In the redox system of 1,4-diazines the paramagnetic 7π-electron intermediate exhibits exceptional stability, whereas the 1,4-dihydro-1,4-diazines with 8π-electrons in a six-membered ring are not generally accessible due to their potential antiaromaticity and their large excess of π electrons. Its inherent bifunctionality and the low lying unoccupied molecular orbital permit pyrazine to form coordination polymers having unusual electrical and magnetic properties. Finally, the phenomena observed for pyrazines may be used in the interpretation of the reactivity of naturally occurring 1,4-diazines, such as flavins and bioluminescent natural products.  相似文献   

14.
A new scandium naphthalenedicarboxylate with the framework composition [Sc2(1,4-NDC)3] (H2-1,4-NDC = 1,4-naphthalenedicarboxylic acid) was obtained under hydrothermal synthesis conditions. A structure model could be developed by a combination of 3D electron diffraction measurements and computationally assisted structure determination, which was further validated by a good agreement with the experimental powder X-ray diffraction pattern. The structure consists of isolated ScO6 octahedra interconnected by the carboxylate groups of linker molecules to form chains. These chains are connected by the naphthalene-moieties to form a three-dimensional framework with square-shaped pores and the organic group pointing into the pores. Although very similar synthesis conditions were chosen, [Sc2(1,4-NDC)3] is not isostructural to aluminum naphthalenedicarboxylate [Al(OH)(1,4-NDC)], which crystallizes in a MIL-53 type structure. This can be traced back to the different inorganic building units that are observed. The compound was thoroughly characterized by elemental analysis, IR spectroscopy, sorption measurements, thermogravimetric analysis and luminescence measurements. [Sc2(1,4-NDC)3] exhibits a high thermal stability and a ligand-based blue luminescence in the solid state at room temperature.  相似文献   

15.
Relatively little is known about structural transformations of very small metal clusters that result from the adsorption of molecules. Here, the ligand-induced structural transformation of Ag(5)(+)(g) by 1,4-cyclohexadiene, which is capable of binding metal clusters as a bidentate ligand, is investigated using equilibrium mass spectrometry experiments and theory. Based on the measured sequential ligand binding free energies of Ag(n)(+)(cyclohexene)(m) and Ag(n)(+)(1,4-cyclohexadiene)(m) (n = 3 and 5; m up to 3), it is found that Ag(5)(+)(1,4-cyclohexadiene) is a particularly stable cluster relative to the other ion-molecule association complexes investigated. These results together with those from electronic structure calculations suggest that upon addition of 1,4-cyclohexadiene to Ag(5)(+), the metal cluster core undergoes a structural transformation from a "bowtie" structure(s), in which two Ag(2) units are bridged side-on by a central Ag atom, into a bidentate Ag(5)(+)(1,4-cyclohexadiene) structure that resembles a "razorback" arrangement of the five Ag atoms. These results raise the prospect of using multidentate ligands to transform larger ionic silver clusters from relatively compact 3D geometries into 2D elongated "razorback" nanowires. However, results from electronic structure calculations for clusters in which the razorback nanowire structural motif is propagated to larger sizes (up to Ag(9)(+)) indicate that the energy required to form such templated structures becomes increasingly unfavourable with increasing size. By calculating the vertical and adiabatic ligand binding energies, the competing effects that contribute to the energy required to form such structures, such as the metal cluster reorganization energy, can be quantified. These results indicate that the tendency for metal clusters to form compact shapes dominates other effects that contribute to the energy for forming templated nanowire structures, and this effect dramatically increases with increasing cluster size.  相似文献   

16.
The synthesis, characterization and electrochemical polymerization, along with redox switching behavior of the resultant polymers, of 1,4-bis(2-(3,4-ethylenedioxy)thienyl)–2,5-difluorobenzene ( 1 ) and 1,4-bis(2-thienyl)–2,5-difluorobenzene ( 2 ) is presented. Compounds 1 and 2 were synthesized by a Pd°-catalyzed cross-coupling and in good yields (85% and 84%, respectively). Both monomers electropolymerize to form electroactive redox switchable films, with the more electron-rich 3,4-ethylenedioxythiophene derivative polymerizing and switching at lower potentials. The electronic band gaps were determined to be 1.9 eV for P1 and 2.3 eV for P2. Thin films of P1 and P2 were found to be electrochromic and exhibit color changes of red-to-blue/black for P1 and yellow-to-black for P2. These results are compared with various substituted bis(heterocycle)benzene derivatives in order to present a series of structure to property relationships. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
The title complex Cd(C(4)H(8)O(2))Cu(CN)(3) has a 3D twofold interpenetrating framework structure. The structural base of the framework is a planar hexagonal network complex of [Cu(CN)(3)Cd](infinity) ,which is formed with cyanides connecting the coordination sites of Cu(i) ions with a triangle planar form and the equatorial coordination sites of Cd(ii) ions with a trigonal bipyramid form. The networks are stacked and a 1,4-dioxane molecule coordinates to two Cd(ii) ions in alternate networks as a bridging ligand. The 1,4-dioxane ligand penetrates a hexagonal window of the network sandwiched between the bridged networks. This 1,4-dioxane bridge completes the 3D twofold interpenetrating framework structure. (2)H-NMR powder patterns of the deuterated complex Cd(C(4)D(8)O(2))Cu(CN)(3) revealed the dynamics of the 1,4-dioxane bridge as a rotor. Above 253 K, the 1,4-dioxane ligand undergoes rotational motion combined with a ring inversion between two chair conformations. The free energy of activation DeltaG(double dagger) for the ring inversion was calculated to be 41.4(7) kJ mol(-1) at 298 K.  相似文献   

18.
A strategy for encouraging the formation of extended water arrays is presented, in which molecules that contain a 1,4-dihydroquinoxaline-2,3-dione core are used as supramolecular hosts for the accommodation of guest water molecules and arrays. These molecules were selected as they contain a hydrophilic oxalamide-based "terminus" that allows water molecules to hydrogen-bond to the host organic molecules as well as to each other. The host molecules also contain a hydrophobic "end" based upon an aromatic ring, which serves to encourage the formation of discrete water clusters in preference to three-dimensional networks, as the water molecules cannot form strong hydrogen bonds with this part of the molecule. A systematic study of several hydrated structures of four organic molecules based on 1,4-dihydroquinoxaline-2,3-dione (qd) is discussed. The organic molecules, qd, 6-methyl-1,4-dihydroquinoxaline-2,3-dione (mqd), 6,7-dimethyl-1,4-dihydroquinoxaline-2,3-dione (dmqd) and 1,4-dihydrobenzo[g]quinoxaline-2,3-dione (Phqd), act as supramolecular crystal hosts for the clusters of water, with zero-, one- and two-dimensional arrays of water being observed. The hydrogen bonding in the structures, both within the water clusters and between the clusters and organic molecules, is examined. In particular, the structure of dmqd6 H2O contains a two-dimensional water sheet composed of pentagonal and octagonal units. Phqd3 H2O forms a hydrophilic extended structure encouraging the formation of one-dimensional chains consisting entirely of water. Both qd2 H2O and dmqd2 H2O can be considered to form one-dimensional chains, but only by utilising bridging carbonyl groups of the oxalamide moieties to form the extended array; if only the water is considered, zero-dimensional water tetramers are observed. The remaining hydrated structures, [Na+dmqd-]dmqdH2O, dmqd1/3H2O and mqd1/2H2O, all contain discrete water molecules but do not form extended water structures.  相似文献   

19.
A series of poly(1,4‐cyclohexylenedimethylene 1,4‐cyclohexanedicarboxylate) (PCCD) samples, characterized by different cis/trans ratio of the 1,4‐cyclohexanedicarbonyl unit, have been synthesized and analyzed by thermogravimetry (TGA), calorimetry (DSC), and X‐ray diffraction (WAXD). The thermal stability results are good and are not affected by the stereochemistry of the 1,4‐cyclohexylene units. On the other hand, the thermal transitions are notably influenced by the cis/trans content. With the increment of the trans content the polymer changes from completely amorphous to semicrystalline material. Tg, Tm, and crystallinity increase. These results suggest that the trans configuration induces a better chain packing and higher symmetry, improving the crystallizability of the samples. The effect of the molecular structure on the thermal properties is analyzed by using a statistical approach. From the effective correlations found between stereochemistry of the C6 rings and transition temperatures it is possible to extrapolate that the configuration of 1,4‐cyclohexylene ring deriving from 1,4‐cyclohexanedicarboxylic acid or dimethyl 1,4‐cyclohexanedicarboxylate results to be the main element responsible for the thermal properties. This is due to the high rigidity of the 1,4‐cyclohexanedicarbonyl unit with respect to 1,4‐cyclohexanedimethyleneoxy unit, deriving from the diol. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 619–630, 2008  相似文献   

20.
The standard changes in enthalpy during the solvation of 1,4-dioxane in methanol, ethyl acetate, DMF, and acetonitrile were determined from calorimetric data and compared with the literature data for a series of solvents with different polarities. The standard changes in the Gibbs energy during the solvation of 1,4-dioxane in a wide series of solvents were calculated from the activity coefficients reported in the literature. The variation of the solvation functions of low-polar 1,4-dioxane in the series of solvents was found to be consistent with the enthalpy-entropy compensation rule. The results for 1,4-dioxane were compared with those for its open-chain analog and related large cyclic molecules. The electrostatic interactions of the solute with the solvents did not markedly affect the thermodynamic characteristics of ether in media with different polarities, but affected the interaction of the solute with the solvent more significantly. The solvation of the small ring of 1,4-dioxane in aprotic solvents was accompanied by a more significant exothermal effect than in the case of its open-chain analog. The conclusion was drawn that the enthalpies of the formation of hydrogen bonds between 1,4-dioxane and the associated water and chloroform molecules in solution were smaller in magnitude than the bonds of the similar open-chain polyether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号