首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution Fourier transform spectra of deuterated hydrogen sulfide have been recorded in the region 2400-3000 cm−1. Rotational structures of the ν1 + ν2, ν2 + ν3 bands of D232S, of the ν3 and ν1 + ν2 bands of HD32S, and of the ν1 + ν2 band of HD34S were analyzed. Band centers and rotational, centrifugal distortion, and resonance parameters were obtained, which reproduce the initial values of the upper energy levels within a mean accuracy of 1.39 × 10−4 cm−1 for the states (110) and (011) of D232S, 1.61 × 10−4 cm−1 and 1.82 × 10−4 cm−1 for the states (001) and (110) of HD32S, and 2.09 × 10−4 cm−1 for the state (110) of HD34S, respectively.  相似文献   

2.
The submillimeter-wave spectrum of SO2 has been recorded with 0.004 cm?1 resolution in the region 8–90 cm?1. About 2000 lines were observed, 1500 of which have been assigned to the ground state rotational transitions of 32SO2. Molecular constants up to the 10th order have been derived, combining our data with the available microwave data in the literature. SO2 rotational spectrum line positions up to 90 cm?1 can be reproduced from these constants, within the experimental accuracy (2 × 10?4 cm?1).  相似文献   

3.
The infrared spectrum of ν2 of D2S was recorded from 740 to 1100 cm?1 on the University of Denver 50-cm FTIR spectrometer system. We have assigned 655 transitions from D232S and 129 from D234S, and have analyzed them using Watson's A-reduced Hamiltonian evaluated in the Ir representation. We used the recently published D232S and D234S ground state Hamiltonian constants [C. Camy-Peyret, J. M. Flaud, L. Lechuga-Fossat and J. W. C. Johns, J. Mol. Spectrosc.109, 300–333 (1985)]. Upper state Hamiltonian constants were obtained from a fit of the ν2 transitions, keeping the ground state constants fixed while varying the upper state constants. The standard deviation of the D232S ν2 fit is 0.0025 cm?1. The standard deviation of the D234S ν2 fit is 0.0041 cm?1.  相似文献   

4.
All available transitions from microwave to visible region (0.2–12 105 cm?1) of the HD18O molecule were collected and tested using the RITZ computer code. Literature data were completed by transitions assigned to HD18O in long path Fourier transform absorption spectra of the H2O, HDO and D2O gas mixtures with natural abundance of oxygen-18. In addition about 40 unassigned lines between 4200 and 6600 cm?1 of our previous water study associated with the HD18O molecule have been found and assigned. The new long path absorption spectra of the HDO and D2O mixtures allow us to observe about 1000 transitions of HD18O in the 6125–10 720 cm?1 spectral region. These data have been critically analyzed and used to obtain the most complete and precise set of the experimental energy levels of this molecule.  相似文献   

5.
The first high-resolution (0.0024 cm?1) spectrum of the 201 band of COF2 at 963 cm?1 is reported. Nearly 4000 rotational transitions have been observed and assigned in the band between 936 and 990 cm?1. The line positions are estimated to be accurate to 0.0001 cm?1 (relative). The spectrum was calibrated using two adjacent bands of OCS. Approximately 1560 infrared transitions have been fitted simultaneously with the previously reported microwave data. The wave numbers of far infrared laser lines recently observed by Tobin and by Temps and Wagner have been calculated from the 21 energy levels, with estimated uncertainties of between 10?5 and 10?6 cm?1.  相似文献   

6.
The infrared spectrum of CH2D2 has been recorded in the region of 1345 to 1561 cm?1 with a resolution of 0.030 to 0.026 cm?1. Most of the observed lines have been assigned to transitions of the ν3 band of CH2D2. However, 114 lines have been identified as transitions of the ν2 band of H216O whose band origin has been directly determined to be 1594.7472 ± 0.0030 cm?1. A few weak lines, probably belonging to the ν5 fundamental of CH2D2, remain unassigned. The band center ν = 1435.1326 ± 0.0030 cm?1 and a set of upper state constants were obtained for the ν3 band of CH2D2. Although a slight perturbation was noticed in the ν3 band, all wavenumbers have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

7.
The infrared absorption spectrum of ν2 of H2S in the region from 1000 to 1500 cm?1 was obtained with a resolution limit of <0.05 cm?1 on the University of Denver 50-cm FTIR spectrometer system. We have assigned 387 lines due to H232S, 75 lines due to H234S, and 15 lines due to H233S, and have analyzed them using Typke's reduction of Watson's Hamiltonian. Slightly revised ground-state constants for the 32 isotope were obtained from a simultaneous fit of the microwave transitions observed by Helminger, Cook, and De Lucia, combined with weighted averaged ground-state combination differences formed from the infrared bands (010), (020), (100), (001), (110), (011), (210), and (111). The standard deviation for the fit was 0.0018 cm?1 for the infrared data and 0.000032 cm?1 for the microwave lines. Upper-state constants for the 32 isotope were obtained from a least-squares fit of the spectral lines of ν2, keeping the ground-state constants fixed to the values determined by the combination difference fit. The standard deviation of the (010) line fit was 0.0017 cm?1 for the 32 isotope. Ground-state and upper-state isotopic mass adjustment constants were determined in a simultaneous fit of lines of H233S and H234S, keeping the ground-state and upper-state constants for the 32 isotope fixed.  相似文献   

8.
The stretching fundamental bands of the isotopically substituted acetylene 13C2D2 have been recorded and analysed. The Raman spectra of the Q branch of v 1 and v 2, Σ+ g + g bands, have been recorded with an instrumental resolution of about 3.0 x 10?3 cm?1 using inverse Raman spectroscopy. The infrared spectrum has been recorded in the region between 2350 cm?1 and 2500 cm?1 with an instrumental resolution of 4.0 x 10?3 cm?1. Transitions belonging to the v 3, Σ+ u + g , fundamental band have been identified and assigned. The vibrational energies and the rotational and centrifugal distortion constants of the excited states of all the observed transitions have been determined. The molecular parameters obtained reproduce the assigned wave-numbers with a standard deviation of the same order of magnitude as the experimental uncertainty.  相似文献   

9.
Far-infrared absorption spectra of H216O, H218O, H16OD, H18OD, D216O, D218O have been observed between 10 and 40 cm?1 at a resolution of 0.07 cm?1. Experimental and calculated line positions agree within the accuracy of the experiment (±0.003 cm?1). The relative intensities of type a and type b transitions of H16OD and H18OD are used to estimate the ratio μaμb.  相似文献   

10.
Fourier transform spectra have been recorded for carbon disulphide (CS2) in the region between 3400 cm?1 and 4400 cm?1. A data analysis has determined new molecular constants: 14 bands were observed for the main isotopic form 12C32S2, two bands for the isotopomer 12C32S34S and one each for 12C32S33S and 13C32S2.  相似文献   

11.
The absorption spectrum of water vapor enriched by deuterium and oxygen-18 is analyzed in the 6000–9200 cm?1 region. The spectrum has been recorded at room temperature with a Bruker IFS 120 h Fourier transform spectrometer. More than 14,000 absorption lines were measured in the recorded spectrum. The vibration–rotation assignments were performed on the basis of previously published experimental energies and of variational calculations. Nine water species (H216O, HD16O, D216O, H218O, HD18O, D218O, H217O, HD17O and D217O) were found to contribute to the observed absorption. More than 3600 lines of 19 vibrational bands of D218O and about 4700 lines of 16 bands of HD18O with J as high as 19 and Ka as high as 11 were assigned. The main part of the HD18O and D218O lines and all lines of HD17O and D217O were observed in the laboratory for the first time. The obtained vibration–rotation energy levels are compared with previous experimental studies and the results of variational calculations.  相似文献   

12.
The infrared spectrum of CH2D2 has been recorded between 1100 and 1360 cm?1 with a SISAM-type spectrometer whose resolution limit is about 0.015 cm?1 in our spectrum. Some lines have been identified as transitions of the ν3 parallel band of CH3D. The band center ν = 1236.2786 ± 0.0010 cm?1 and a set of upper state constants was obtained for the ν9 band of CH2D2. A perturbation was pointed out in ν9; nevertheless, all frequencies have been fitted with a standard deviation of 3.8 × 10?3 cm?1.  相似文献   

13.
Microwave measurements have been made on isotopically enriched samples of 13C-carbonyl sulfide and 18O-carbonyl sulfide. Centrifugal distortion constants and l-type doubling constants have been determined for these isotopically substituted molecules. Rotational constants have been measured for all vibrational states below 2150 cm?1 and Be values have been determined. The equilibrium bond distances calculated from different pairs of isotopes are compared and a substitution equilibrium structure is given. Some new measurements are also reported for the isotopic species 18O13C32S, 18O13C34S, 18O12C34S, and 16O13C34S.  相似文献   

14.
The rotational structure of the ν2 band of D216O between 700 and 1550 cm?1 has been analyzed from spectra recorded with a Fourier transform spectrometer (nominal resolution: 0.1 cm?1). By applying Watson's reduced Hamiltonian and a least squares method to the set of observed transitions, together with microwave data and the infrared data of Williamson, 22 rotational constants for the ground state and 17 for the upper state have been obtained which predict the positions of more than 700 observed lines with a standard deviation of 0.04 cm?1.  相似文献   

15.
Infrared reflection spectra of single crystals of BeSO4·4H2O and BeSO4·4D2O have been obtained in polarized light at 300°K and at 14°K in the region between 4000 cm?1 and 300 cm?1. By a Kronig-Kramers analysis, the frequencies of the infrared active transitions have been calculated. These transitions are attributed to internal vibrations of the water molecules and sulfate ions and, in the region between 1000 cm?1 and 300 cm?1, especially to internal and external vibrations of the tetrahedral Be++·4aqu-complexes. The vibrational modes of these complexes consist of a superposition of translational and librational modes of the water molecules and translational modes of the central Be++-ion. The vibrational frequencies and normal modes of this complex have been calculated in a central-force model, and force-constants have been determined by fitting the calculated frequencies to the observed spectra. The calculations have shown that the modes, which comprise mainly translational motions of the water molecules, are strongly coupled with librational motions of the water molecules. On the other hand, there exist pure librational modes with practically no admixture of translational motions. The optimum sets of force constants for the BeSO4·4H2O crystal and the BeSO4·4D2O crystal differ in a manner which can be understood under the assumption that the dimensions of the Be(D2O)4 complex are about 0.1 Å larger than those of the Be(H2O)4 complex. Some arguments supporting this conclusion will be discussed.  相似文献   

16.
Spontaneous Raman spectroscopy is used to determine line positions of the six isotopomers of molecular hydrogen: H2, HD, HT, D2, DT, and T2. State populations as low as 1.3 × 108 are detected with the present experimental apparatus. This sensitivity makes possible measurement of the first overtone Q-branch line positions for H2 and D2 and of higher rotational transitions than previous investigations. The line positions for D2, DT, and T2 indicate that literature values for molecular parameters do not predict accurately line positions of transitions at J values above the observed transitions from which they were determined. The results for the six molecular isotopomers show that ab initio energy levels restricted to the adiabatic approximation do not yield line positions within the experimental uncertainty whereas recent nonadiabatic calculations reproduce the present observations. Reexamination of literature results at high energies indicates discrepancies between the theoretical calculations and experimental vibrational band origins for all vibrational levels in HT, DT, and T2. No experimental measurements are currently available that test the accuracy of nonadiabatic ab initio rotational levels at high energies.  相似文献   

17.
Abstract

The complexes between H2O, D2O, HOD and pyridine have been studied in 1,2-dichloroethane by FT-IR spectrometry. Equal splittings of the stretching bands of H2O and D2O about their uncoupled vibrations are observed. The coupling between the asymmetric and symmetric vibrations reaches a value of zero when the band separation is greater than 500 cm?1 for the OH vibrations and 365 cm?1 for the OD vibrations. The vOH stretching frequencies of the HOD ‥ complexes and the vOD stretching frequencies of the DOH‥ complexes increase by complex formation. These features are explained by an electronic reorganization within the hydrogen bond.  相似文献   

18.
Absorption spectra of HDO/D2O mixtures recorded in the 5600-8800 cm−1 region with a total pressure of water from 13 up to 18 hPa and an absorption path length of 600 m have been analyzed in order to obtain new spectroscopic data for HD18O and D218O. In spite of the low natural 18O concentration (about 2×10−3 with respect to the 16O one), about 1100 transitions belonging to HD18O and more than 280 transitions belonging to D218O have been assigned. Most of the D218O transitions belong to the ν1+ν2+ν3 and 2ν1+ν3 bands. Sets of energy levels for seven vibrational states of D218O and four states of HD18O are reported for the first time. The comparison of the experimental data with the calculated values based on Partridge-Schwenke global variational calculations is discussed.  相似文献   

19.
The AFCRL atmospheric line-parameter listing has been used with a non-linear, least-squares method of analysis to obtain the abundances of N2O and CO in a sample of ground level air with a precision of about 1%. Absorption coefficients calculated for N2O agree satisfactory with laboratory measurements but an error of 0.0267 cm-1 in the listed position of an H2O line at 2205.250 cm-1 has been corrected and errors in the positions and intensities of CO2 lines between 2230 and 2250 cm-1 have been observed.  相似文献   

20.
First measurements of line intensities for ν1 and ν3 bands of D232S are reported. About 300 intensities of D232S vibration–rotation lines were obtained from experimental high-resolution spectra recorded in the 1810–2051 cm−1 region with the Fourier Transform Spectrometer built in Reims. Empirical values of transition moment parameters for ν1 and ν3 bands of D232S were determined for the first time using a least-square fit to the observed intensities. Experimental D232S intensities were compared with recent global variational predictions [Vl.G. Tyuterev, L. Régalia-Jarlot, D.W. Schwenke, S.A. Tashkun, Y.G. Borkov, C. R. Phys. 5 (2004) 189–199] computed from isotopically invariant potential and dipole moment functions of the hydrogen sulphide molecule. Average discrepancy between these calculations and our observed data was 0.03 cm−1 for line positions of this spectral range. The discrepancy between these calculations and our measurements for the sum of line intensities was 5.5% and 3.5% for the ν1 and ν3 bands, correspondingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号