首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ν2 + ν3 bands of 12CH4 and 13CH4 occurring in the region 4400–4650 cm?1 have been studied from spectra recorded with a high-resolution Fourier transform spectrometer (resolution better than 0.01 cm?1). Champion's Hamiltonian expansion, Canad. J. Phys.55, 1802 (1977), is applied to the problem of the two interacting F1 and F2 vibrational sublevels of this type of a band. As the P branch of ν2 + ν3 is strongly overlapped by neighboring bands, a combination-difference method, adapted to tetrahedral XY4 molecules has been developed to help assignments of lines. A fit of 700 transitions has been performed using 13 new effective constants in the case of 12CH4. In the case of 13CH4, 532 transitions have been fit to 18 constants. The known parameters, relative to the vibrational ground state and the ν3 state for both methanes, and the ν2 state for 12CH4 were fixed throughout. Most of the perturbed levels, up to J′ = 12, are well reproduced and the general agreement between experimental and calculated transitions is satisfactory with standard deviations of 0.047 cm?1 (12CH4) and 0.041 cm?1 (13CH4). The results (order of magnitude of obtained (ν2 + ν3) parameters and comparison of observed and computed intensities) indicate that the ν2 + ν3 band is perturbed by many other bands.  相似文献   

2.
The spectrum of CH3F between 2000 and 2100 cm?1 has been investigated under high resolution (0.025 cm?1). Three parallel bands have been analyzed: 2ν3 of 12CH3F for which the rotational K structure has been studied, 3ν3-ν3 of 12CH3F, and 2ν3 of 13CH3F. The band center of the main band 2ν3 of 12CH3F has been found at 2081.383 cm?1.  相似文献   

3.
Rotational transitions of CH3CCSiH3 have been observed in the millimeter-wave region using a computer-controlled source-frequency modulation spectrometer with a 1.8-m-long free space absorption cell. The observed spectrum clearly showed the effect of internal rotation with a small potential barrier. It has been analyzed by calculating the torsion-rotation energies on the basis of torsional wave functions obtained by diagonalizing the torsional part of the Hamiltonian. The least-squares analysis has yielded the rotational constant B = 2068.2817(4) MHz and a few centrifugal distortion constants. The barrier height to internal rotation has been determined to be 3.77(70) cm?1 from the contour map of the standard deviation. Also, the A rotational constant of the silyl group around the symmetry axis has been estimated by fixing the A constant of the methyl group to the value of CH3CCH.  相似文献   

4.
The previously reported (J. Mol. Spectrosc.68, 195–222 (1977)) study of the CH3D spectrum occurring at 1033–1270 cm?1 which was mainly concerned with the ν6 fundamental has now been extended to cover the region 1270–1420 cm?1. In all, 342 transitions belonging to the ν3 band are now assigned. Both the ν3 and ν6 bands are processed simultaneously taking into account of the Coriolis interaction between them, and the fitting of all the experimental data led to 21 significant spectroscopic constants for the states v6= 1 and v3 = 1 of CH3D.  相似文献   

5.
The rotational structure of the infrared band ν1 of CH3I has been studied at a resolution of 0.04 cm?1 using a grating spectrometer. In the analysis including 470 lines a resonance, explained to be caused by ν2 + 2ν6±2, has been taken into account. The molecular constants derived include, e.g., α1A = 0.051129(14) cm?1 and α1B = 0.0983(9) × 10?3 cm?1.  相似文献   

6.
The heat capacity of the layer compounds tetrachlorobis (n-propylammonium) manganese II and tetrachlorobis (n-propylammonium) cadmium II, (CH3CH2CH2NH3)2MnCl4 and (CH3CH2CH2NH3)2CdCl4 respectively, has been measured over the temperature range 10 K ?T ? 300 K.Two known structural phase transitions were observed for the Mn compound in this temperature region: at T = 112.8 ± 0.1 K (ΔHt= 586 ± 2 J mol?1; ΔSt = 5.47 ± 0.02 J K?1mol?1) and at T =164.3 ± (ΔHt = 496 ± 7 J mol?1; ΔSt =3.29 ± 0.05 J K?1mol?1). The lower transition is known to be from a monoclinic structure to a tetragonal structure, while the upper is from the tetragonal phase to an orthorhombic one. From comparison with the results for the corresponding methyl Mn compound it is deduced that the lower transition primarily involves changes in H-bonding while the upper transition involves motion in the propyl chain.A new structural phase transition was observed in the Cd compound at T= 105.5 ± 0.1 K (ΔHt= 1472.3 ± 0.1 J mol?1; ΔSt = 13.956 ± 0.001 J K?1mol?1), in addition to two transitions that have been observed previously by other techniques. The higher of these transitions(T = 178.7 ± 0.3 K; ΔHt = 982 ± 4 J mol?1 ΔSt = 6.16 ± 0.02 J K? mol?1) is known to be between two orthorhombic structures, while the structural changes at the lower transition (T= 156.8 ± 0.2 K; ΔHt = 598 ± 5 J mol?1, ΔSt = 3.85 ± 0.03 J K?1 mol?1) and at the new transition are not known. It is proposed that these two transitions correspond respectively to the tetragonal to orthorhombic and monoclinic to tetragonal transitions in the propyl Mn compounds.In addition to the structural phase transitions (CH3CH2CH2NH3)2MnCl4 magnetically orders at t? 130 K. The magnetic contribution to the heat capacity is deduced from the heat capacity of the corresponding diamagnetic Cd compound and is of the form expected for a quasi 2-dimensional Heisenberg antiferromagnet.  相似文献   

7.
The FTIR spectrum of the unstable species thioketene, CH2CS, has been detected in a vapor-phase flow pyrolysis system. The region 800–3500 cm?1 has been surveyed with a resolution of 1 cm?1, enabling the frequencies of the six fundamentals which lie above 800 cm?1 to be determined. Certain bands have been studied under very high resolution and the results of the analyses of the perpendicular bands ν7 and ν3 + ν8, observed with a resolution of 0.01 and 0.005 cm?1 respectively, are presented. The ground state constant, A0, is determined as 286 453.60(58) cm?1.  相似文献   

8.
The microwave and millimeter wave spectrum of 12CH318OH has been observed in the frequency region 7.9–200 GHz. Both a- and b-type transitions have been assigned and measured. This spectrum was analyzed using the method of Lees and Baker, and rotational constants, torsional constants, centrifugal distortion constants, the barrier to internal rotation and moments of inertia have been evaluated. The barrier has been found to be 374.91 ± 0.18 cm?1, in good agreement with that of 12CH316OH. The moments of inertia were combined with those of other isotopic species to give a full substitution structure. To assist searches for this molecule in interstellar space a table of predicted frequencies of astrophysically interesting transitions is presented.  相似文献   

9.
The experimental Fourier spectrum of CH3OH has been investigated between 8 and 40 cm?1. Good agreement was found between the experimental measurements and the results of the computational routines available up to now when low J values (J ? 10) are involved. At higher J, the line assignments are possible by means of Taylor expansions of the energy levels. A catalog of almost 1500 lines, two-thirds of which have been assigned, is presented.  相似文献   

10.
We record double resonance spectra of the 4ν1 band of jet-cooled 13C-methanol using single rotational state selection in the ν1 fundamental and subsequent promotion of the selected molecules to the fourth vibrational level. We then detect transitions to the final excited states by infrared laser assisted photofragment spectroscopy (IRLAPS). The assigned A symmetry transitions reach upper states with K=0 and 1, and J from 0 to 5. For E symmetry, the transitions reach levels with K in the range −3 to 2 and J from 1 to 7. The rotation-torsional analysis determines a value for the torsional tunneling splitting of 2.8±0.4 cm−1 at v1=4. In a previous paper (J. Chem. Phys.110, 11 359-11 367 (1999)), we reported a trend of monotonically decreasing tunneling splittings in 12CH3OH for v1=0, 3, and 6 that we explained by a model that incorporates a linear increase in the torsional barrier height with OH stretch excitation. The 13CH3OH tunneling splitting for the 4ν1 band is in quantitative agreement with the trend found for 12CH3OH.  相似文献   

11.
The far-infrared torsional spectrum of CH3SiD3 has been measured in a continuing effort to quantify the coupling between the small amplitude vibrations and the large amplitude internal rotation of the methyl group in symmetric tops. It is hoped that this will help in understanding the role of torsional motion in intramolecular vibrational relaxation. The spectrum was recorded with the Bruker IFS120 HR interferometer that is coupled to the MAX-I synchrotron radiation source in Lund, Sweden. High-resolution (0.002 cm−1) spectra of the very weak torsional overtone 2ν6 and hot band 3ν6−ν6 were recorded between 230 and 350 cm−1. A total of 1413 frequencies in these two bands were assigned. In a separate experiment, a high-resolution (0.00125 cm−1) spectrum of the lowest-lying degenerate fundamental band ν12 was measured between 360 and 480 cm−1, and 3263 frequencies belonging to this band were assigned. This spectrum was recorded with the Bruker IFS120 HR interferometer located at the University of Oulu, Finland. The frequencies from the aforementioned three bands and the data from the recent molecular beam measurements reported by Ozier and Meerts (J. Chem. Phys.109, 4823 (1998)) were analyzed using a model which considered three interacting torsional stacks: one for the ground vibrational state and two for v12=1. A fit to within the experimental error was obtained by varying 36 molecular parameters. Several interstack coupling constants have been determined. A comparison of the leading parameters between CH3SiD3 and CH3SiH3 is presented.  相似文献   

12.
The far-infrared spectra of the Q branches of hindered rotation in CH3OD and CD3OD have been investigated in the 80- to 250-cm?1 spectral region. The theoretical spectra are calculated using the full set of Kirtman constants and are compared with the experimental spectra of resolutions up to 0.13 cm?1.  相似文献   

13.
A value of A0 = 5.1800 ± 0.0010 cm?1 for CH3Br has been determined from an analysis of the ν4 Raman band, based both on a direct fit of Q-branch frequencies and on ground state combination differences. The constants ν4, ()4, η44, and Ae = 5.2442 ± 0.0015 cm?1 were also determined. The equilibrium distance of the H atoms from the figure axis is calculated as 0.32077 ± 0.00005 Å. All the fundamental Raman bands of CH3Br were observed, and experimental results for the ν1, ν2 and ν5 bands are included.  相似文献   

14.
The ν5 and ν3 Raman bands of CH2D2 have been recorded with a resolution of 0.35 cm?1. The ν3 state is well known from infrared studies. Three hundred twenty-nine transitions of the ν5 band were analyzed, assuming an unperturbed upper state, giving a standard deviation on the fit of the upper-state energies of 0.037 cm?1, The constants A, B, C, ΔJ, ΔJK, and ΔK differed significantly from the ground-state values, and ν5 was determined as 1331.41 ± 0.05 cm?1. This work represents the first complete analysis of the fine structure of a rotation-vibrational Raman band for an asymmetric rotor. The ν5 state could not be analyzed in infrared so this investigation, once more, demonstrates the usefulness of the Raman method.  相似文献   

15.
About 900 Stark transitions from 70 vibration-rotation transitions in CH335Cl and about 400 transitions from 38 transitions in CH335Cl in the ν6 band have been assigned. These data were analyzed simultaneously with previously published microwave data on the ν6 = 1 state. The fit has a standard deviation of about 2 MHz for the data for both isotopes. The isoptopic shift ν635 ? ν637 = 0.3766(6) cm?1. Rotational dependence of the dipole moment was also just apparent at about μJ = μK = 1 × 10?5 D, and a complete set of molecular constants is given.  相似文献   

16.
The infrared spectrum of methyleneimine, CH2NH, has been observed in the gas phase with a resolution of 0.006 cm?1 using the KPNO Solar Fourier Transform spectrometer. The short-lived CH2NH was produced in a flow system by the pyrolysis of CH3NH2 at ca. 1000°C. The origin of the ν5 band was determined to be 1452.0394 cm?1 and that of the ν6 band as 1344.2666 cm?1. The Coriolis interaction between the ν5 and ν6 states was explicitly included in the analysis, enabling a value for the Coriolis interaction parameter between these states to be derived.  相似文献   

17.
The ν4 infrared and Raman bands of CH3Cl were analyzed simultaneously. A direct fit yielded a complete set of constants for CH335Cl, including A0 = 5.20530 ± 0.00010 cm?1 and DK = (8.85 ± 0.13) × 10?5cm?1. For CH337Cl an incomplete set of constants was obtained from the infrared band, and A0 = 5.2182 ± 0.0010 cm?1 was estimated by curve fitting of the Raman spectrum. The resulting equilibrium structure is r(CH) = 1.0854 ± 0.0005 A?, r(CCl) = 1.7760 ± 0.0003 A?, and <(HCH) = 110°.35 ± 0°.05.  相似文献   

18.
The semirigid bender Hamiltonian [Bunker and Landsberg, J. Mol. Spectrosc.67, 374–385 (1977)] was used to fit the rotation-inversion energy level separations in the A?1A2 excited state of formaldehyde. We fix the r0(CH) bond length and allow the R(CO) bond length and (H?H) bond angle to vary with the inversion angle ρ. The fit to 64 rotation-inversion energies (with v4 and J < 4) is significantly better with a standard deviation of 0.199 cm?1 than when the rigid bender [Bunker and Stone, J. Mol. Spectrosc.41, 310–332 (1972)] is used. The barrier height to planarity is 358 cm?1 and the equilibrium ρe = 34.7°. The CO bond length is found to decrease by 0.034 from 1.3670 Å and the H?H angle by about 6 from 122.4° as the molecular configuration changes from planar to pyramidal. The rigid bender model developed earlier by Moule and Rao for formaldehyde [J. Mol. Spectrosc.45, 120–141 (1973)] is then used to fit the 32 rotation-(out-of-plane) bending energy levels (with v4 = 0 and 1) of the X?1A1 ground electronic state of H2CO. For this, a simple potential consisting of quadratic and quartic terms is used and the standard deviation of the fit is 0.148 cm?1.  相似文献   

19.
The multiplet splitting patterns of microwave transitions in the ground state and the first two torsional excited states of CH3OCH3, CD3OCD3, and CD3OCH3 were analyzed in terms of the semirigid rotor models C2vF-C3vT-C3vT and C3F-C3vT-C3vT?. The following nonzero potential coefficients were obtained for CH3OCH3: V30 = V03 = 909.05 ± 0.49 cm?1, V33 = 5.06 ± 1.60 cm?1; for CD3OCH3: V30(CD3) = 897.18 ± 2.41 cm?1, V03(CH3) = 910.45 ± 0.33 cm?1; for CD3OCD3: V30 = V03 = 897.00 cm?1. These results are compared to earlier microwave studies of these molecules.  相似文献   

20.
The high-resolution spectrum of the ν3 band of 12CD4 has been recorded and analyzed. Corresponding to 367 allowed transitions of this band, 218 lines have been identified between 2180 and 2320 cm?1. Twelve significant spectral constants have been determined in such a way as to reproduce the spectrum with a standard deviation equal to 7 × 10?3 cm?1.A comparative analysis between the present results on ν3 and those obtained by K. Fox [J. Mol. Spectrosc.9, 381 (1962)] for 2ν3 showed that the interaction between the two sub-levels E and F2 of the v3 = 2 state produces a significant effect of the second order and enabled us to determine the interval between these sublevels, i.e., 20 T33 ~ 30 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号