首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
It is shown that if A?Ωn?{Jn} satisfies
nkσk(A)?(n?k+1)2 σk?1(A)
(k=1,2,…,n)
, where σk(A) denotes the sum of all kth order subpermanent of A, then Per[λJn+(1?λ)A] is strictly decreasing in the interval 0<λ<1.  相似文献   

2.
Let?(x1,…,xp) be a polynomial in the variables x1,…,xp with nonnegative real coefficients which sum to one, let A1,…,Ap be stochastic matrices, and let ??(A1,…,Ap) be the stochastic matrix which is obtained from ? by substituting the Kronecker product of An11,…,Anppfor each term Xn11·?·Xnpp. In this paper, we present necessary and sufficient conditions for the Cesàro limit of the sequence of the powers of ??(A1,…,Ap) to be equal to the Kronecker product of the Cesàro limits associated with each of A1,…,Ap. These conditions show that the equality of these two matrices depends only on the number of ergodic sets under??(A1,…,Ap) and?or the cyclic structure of the ergodic sets under A1,…,Ap, respectively. As a special case of these results, we obtain necessary and sufficient conditions for the interchangeability of the Kronecker product and the Cesàro limit operator.  相似文献   

3.
The main concern of this paper is linear matrix equations with block-companion matrix coefficients. It is shown that general matrix equations AX ? XB = C and X ? AXB = C can be transformed to equations whose coefficients are block companion matrices: C?LX?XCM = diag[I 0…0] and X?C?LXCM = diag[I 0…0], respectively, where ?L and CM stand for the first and second block-companion matrices of some monic r × r matrix polynomials L(λ) = λsI + Σs?1j=0λjLj and M(λ) = λtI + Σt7minus;1j=0λjMj. The solution of the equat with block companion coefficients is reduced to solving vector equations Sx = ?, where the matrix S is r2l × r2l[l = max(s, t)] and enjoys some symmetry properties.  相似文献   

4.
Let Xn be an irreducible aperiodic recurrent Markov chain with countable state space I and with the mean recurrence times having second moments. There is proved a global central limit theorem for the properly normalized sojourn times. More precisely, if t(n)ink=1i?i(Xk), then the probability measures induced by {t(n)i/√n?√i}i?Ii being the ergotic distribution) on the Hilbert-space of square summable I-sequences converge weakly in this space to a Gaussian measure determined by a certain weak potential operator.  相似文献   

5.
In “The Slimmest Geometric Lattices” (Trans. Amer. Math. Soc.). Dowling and Wilson showed that if G is a combinatorial geometry of rank r(G) = n, and if X(G) = Σμ(0, x)λr ? r(x) = Σ (?1)r ? kWkλk is the characteristic polynomial of G, then
wk?rk+nr?1k
Thus γ(G) ? 2r ? 1 (n+2), where γ(G) = Σwk. In this paper we sharpen these lower bounds for connected geometries: If G is connected, r(G) ? 3, and n(G) ? 2 ((r, n) ≠ (4,3)), then
wi?ri + nri+1 for i>1; w1?r+nr2 ? 1;
|μ| ? (r? 1)n; and γ ? (2r ? 1 ? 1)(2n + 2). These bounds are all achieved for the parallel connection of an r-point circuit and an (n + 1)point line. If G is any series-parallel network, r(G) = r(G?) = 4, and n(G) = n(G?) = 3 then (w1(G))4t-G ? (w1(G?)) = (8, 20, 18, 7, 1). Further, if β is the Crapo invariant,
β(G)=dX(G)(1),
then β(G) ? max(1, n ? r + 2). This lower bound is achieved by the parallel connection of a line and a maximal size series-parallel network.  相似文献   

6.
It is proved that Wigner's semicircle law for the distribution of eigenvalues of random matrices, which is important in the statistical theory of energy levels of heavy nuclei, possesses the following completely deterministic version. Let An=(aij), 1?i, ?n, be the nth section of an infinite Hermitian matrix, {λ(n)}1?k?n its eigenvalues, and {uk(n)}1?k?n the corresponding (orthonormalized column) eigenvectors. Let v1n=(an1,an2,?,an,n?1), put
Xn(t)=[n(n-1)]-12k=1[(n-1)t]|vn1uf(n-1)|2,0?t?1
(bookeeping function for the length of the projections of the new row v1n of An onto the eigenvectors of the preceding matrix An?1), and let finally
Fn(x)=n-1(number of λk(n)?xn,1?k?n)
(empirical distribution function of the eigenvalues of Ann. Suppose (i) limnannn=0, (ii) limnXn(t)=Ct(0<C<∞,0?t?1). Then
Fn?W(·,C)(n→∞)
,where W is absolutely continuous with (semicircle) density
w(x,C)=(2Cπ)-1(4C-x212for|x|?2C0for|x|?2C
  相似文献   

7.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

8.
If k is a perfect field of characteristic p ≠ 0 and k(x) is the rational function field over k, it is possible to construct cyclic extensions Kn over k(x) such that [K : k(x)] = pn using the concept of Witt vectors. This is accomplished in the following way; if [β1, β2,…, βn] is a Witt vector over k(x) = K0, then the Witt equation yp ? y = β generates a tower of extensions through Ki = Ki?1(yi) where y = [y1, y2,…, yn]. In this paper, it is shown that there exists an alternate method of generating this tower which lends itself better for further constructions in Kn. This alternate generation has the form Ki = Ki?1(yi); yip ? yi = Bi, where, as a divisor in Ki?1, Bi has the form (Bi) = qΠpjλj. In this form q is prime to Πpjλj and each λj is positive and prime to p. As an application of this, the alternate generation is used to construct a lower-triangular form of the Hasse-Witt matrix of such a field Kn over an algebraically closed field of constants.  相似文献   

9.
Let Sp(H) be the symplectic group for a complex Hibert space H. Its Lie algebra sp(H) contains an open invariant convex cone C0; each element of C0 commutes with a unique sympletic complex structure. The Cayley transform C: X∈ sp(H)→(I + X)1∈ Sp(H) is analyzed and compared with the exponential mapping. As an application we consider equations of the form (ddt) S = A(t)S, where t → A(t) ? C?0 is strongly continuous, and show that if ∝?∞A(t)∥ dt < 2 and ∝? t8A(t) dt?C0, the (scattering) operator
S=s?limt→∞t′→?∞ St(t)
, where St(t) is the solution such that St(t′) = I, is in the range of B restricted to C0. It follows that S leaves invariant a unique complex structure; in particular, it is conjugate in Sp(H) to a unitary operator.  相似文献   

10.
For the variance of stationary renewal and alternating renewal processes Nn(·) the paper establishes upper and lower bounds of the form
?B1?varN8(0,x–Aλx?B2(0<x<∞)
, where λ=EN8(0,1), with constants A, B1 and B2 that depend on the first three moments of the interval distributions for the processes concerned. These results are consistent with the value of the constant A for a general stationary point process suggested by Cox in 1963 [1].  相似文献   

11.
The following estimate of the pth derivative of a probability density function is examined: Σk = 0Na?khk(x), where hk is the kth Hermite function and a?k = ((?1)pn)Σi = 1nhk(p)(Xi) is calculated from a sequence X1,…, Xn of independent random variables having the common unknown density. If the density has r derivatives the integrated square error converges to zero in the mean and almost completely as rapidly as O(n?α) and O(n?α log n), respectively, where α = 2(r ? p)(2r + 1). Rates for the uniform convergence both in the mean square and almost complete are also given. For any finite interval they are O(n?β) and O(n2log n), respectively, where β = (2(r ? p) ? 1)(2r + 1).  相似文献   

12.
The two lowest eigenvalues E0(λ), E1(λ) of a symmetric double well tunnelling problem ?Δ + λ2V as λ → ∞ are considered and they are compared to the two lowest eigenvalues E?0(λ), E?1(λ) of ?Δ + λ2(V + W), where W is supported away from the well-bottoms of V. We determine the leading exponential splitting of various differences of the four numbers E0, E1, E?0, E?1. Related problems are discussed.  相似文献   

13.
Let Mm,n(F) denote the space of all mXn matrices over the algebraically closed field F. A subspace of Mm,n(F), all of whose nonzero elements have rank k, is said to be essentially decomposable if there exist nonsingular mXn matrices U and V respectively such that for any element A, UAV has the form
UAV=A1A2A30
where A1 is iX(k–i) for some i?k. Theorem: If K is a space of rank k matrices, then either K is essentially decomposable or dim K?k+1. An example shows that the above bound on non-essentially-decomposable spaces of rank k matrices is sharp whenever n?2k–1.  相似文献   

14.
In this paper we are constructing a recurrence relation of the form
i=0rωi(k)mk+i{λ} [f] = ω(k)
for integrals (called modified moments)
mk{λ}[f]df=?11 f(x)Ck(λ)(x)dx (k = 0,1,…)
in which Ck(λ) is the k-th Gegenbauer polynomial of order λ(λ > ?12), and f is a function satisfying the differential equation
i=0n Pi(x)f(i)(x) = p(x) (?1?x?1)
of order n, where p0, p1, …, pn ? 0 are polynomials, and mkλ[p] is known for every k. We give three methods of construction of such a recurrence relation. The first of them (called Method I) is optimum in a certain sense.  相似文献   

15.
Let C be a closed convex subset of a uniformly smooth Banach space. Let S(t) : CC be a semigroup of type ω. Then the generator A0 of S(t) has a dense domain in C. Moreover there is is an operator A such that: (i) A0 ? A and D(A) = C, (ii) A + gwI accretive, (iii) R(I + λA) ? C for λ > 0 and ωλ < 1, (iv) S(t)x = limn → ∞(I + (tn)A)?nx for every x?C.  相似文献   

16.
A sufficient condition is given for the operator T0: C0(Rm) → L2(Rm) given by
T0K?1M(i??x1+b1)a1K(i??Nk+bk)+q
to be essentially self-adjoint. This condition is sufficiently general to admit certain potentials q having unbounded oscillations in a neighborhood of ∞.  相似文献   

17.
The composition of two Calderón-Zygmund singular integral operators is given explicitly in terms of the kernels of the operators. For φ?L1(Rn) and ε = 0 or 1 and ∝ φ = 0 if ε = 0, let Ker(φ) be the unique function on Rn + 1 homogeneous of degree ?n ? 1 of parity ε that equals φ on the hypersurface x0 = 1. Let Sing(φ, ε) denote the singular integral operator Sing(φ, ε)f(x0, x) = limδ → 0 ∝∝¦y0¦ ? δf(x0 ? y0, x ? y), Ker(φ)(y0, y) dy0 dy, which exists under suitable growth conditions on ? and φ. Then Sing(φ, ε1) Sing(ψ, ε2)f = ?2π2(∝ φ)(∝ ψ)f + Sing(A, ε1, + ε2)f, where
A(x)=limδ→0∫∫δ?|λ|?δ?1|λ+1|?1+?2n|λ|?2θ(x+λ(x?y))ψ(y)dλdy
(with notation ¦t¦0a = ¦t¦aand ¦t¦1a = ¦t¦asgn t). This result is used to show that the mapping ψA is a classical pseudo-differential operator of order zero if φ is smooth, with top-order symbol
ω0(x,?)=?πiθ(?)∫θ(x?y)sgn y·?dy if ?1=1
,
=?2θ(?)∫θ(x?y)log|y·?|dy if ?1=0
where θ(ξ) is a cut-off function. These results are generalized to singular integrals with mixed homogeneity.  相似文献   

18.
Let etSande?tT be (C0)-semigroups on a Banach space X. Their tensor product L(t) is defined by L(t)A = etSAetT (A?B(X)) and has the generator Δ formally of the form ΔA = SA ? AT. Under the assumption that {L(t); t ? 0} is bounded, we investigate the Abel limit and the Cesàro limit of L(t)A at ∞. If gWsu] denotes the set of operators A for which the Abel limit Ps(A) [resp. Pu(A)] exists in the strong [resp. uniform] operator topology, then
N(Δ)⊕R(Δ) = ωu ? ωs ? N(Δ) + R(Δ)
and the limit defines a projection Ps[Pu] from Ωs [resp. Ωu] onto N(Δ) with N(Δ) with R(Δ) = N(Pu) ? N(Pu) ? R(Δ). If, in addition, S and T are Hilbert space normal operators such that gq(S) ∩ gq(T) ≠ φ, then Ωu contains all compact operators.  相似文献   

19.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

20.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号