首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let α ? 0 and let D(α) = {f(z) = ∑0αnzn ¦ ∑0 (n + 1)α¦ an ¦ < ∞}. Then D(α) is a subalgebra of l1. We discuss the weak-1 generators of D(α). We use some of our techniques to prove that if ? is a weak-1 generator of H and ∥ ? ∥ ? 1, then the composition operator C? on the Dirichlet space has dense range.  相似文献   

2.
3.
Let A and B be uniformly elliptic operators of orders 2m and 2n, respectively, m > n. We consider the Dirichlet problems for the equations (?2(m ? n)A + B + λ2nI)u? = f and (B + λ2nI)u = f in a bounded domain Ω in Rk with a smooth boundary ?Ω. The estimate ∥ u? ? u ∥L2(Ω) ? C? ¦ λ ¦?2n + 1(1 + ? ¦ λ ¦)?1 ∥ f ∥L2(Ω) is derived. This result extends the results of [7, 9, 10, 12, 14, 15, 18]by giving estimates up to the boundary, improving the rate of convergence in ?, using lower norms, and considering operators of higher order with variable coefficients. An application to a parabolic boundary value problem is given.  相似文献   

4.
For any fixed 0 < π ? 2π, let D(π) be the family of all holomorphic functions in the unit disk Δ which satisfy (i)f(0) = 0 and (ii) lim infz → π¦f(z)¦ ? 1, for all π lying on some arc Af ? with arclength ¦Af¦ ? π. We show that for each 0 < ε < 1, there is a π0 > 0 such that for any f?D(π) with π < π0, the Bloch and Doob norm respectively satisfy
6f6B= supz?Δ |f′(z)| (1?|z|2) > 2(1 ? ε) log1+cos(p21?cos(p2?1
6f6D= supz?Δ |f′(z)| (1?|z|) > (1 ? ε) log11?cos(p2?1
These two estimates do not hold with ε = 0.  相似文献   

5.
It is shown that there is a closed symmetric derivation δ of a C1-algebra with dense domain D(δ), an element A = A1 ?D(δ), and a C1-function f such that f(A)?D(δ). Some estimates are derived for ∥ δ(¦ A ¦)∥ and ∥ δ(A+α)∥, where 0 < α < 1. It is shown that there exists a family of one-one self-adjoint operators S(t) in L(H) which depends linearly on t, while ¦ S(t)¦ is not differentiable. It is also shown that there exists L(H) which is not C1-self-adjoint even though it satisfies exp(itT)∥ ? C(1 + ¦ t ¦) for all t ? R  相似文献   

6.
A factorial set for the Gaussian integers is a set G = {g1, g2gn} of Gaussian integers such that G(z) = Πk(z ? gk)gk takes Gaussian integer values at Gaussian integers. We characterize factorial sets and give a lower bound for max∥z∥2=nπ ∥ G(z)∥. It is conjectured that there are infinitely many factorial sets. A Gaussian integer valued polynomial (GIP) is a polynomial with the title property. A bound similar to the above is given for maxz∥2=nG(z)∥ if G(z) is a GIP. There is a relation between factorial sets and testing for GIP's. We discuss this and close with some examples of factorial sets, and speculate on how to find more.  相似文献   

7.
We show how inequalities of the type ∥F∥p ? C(p, q) a1 + (1p)? (1q) ∥ F ′ ∥q′ when F(0) = 0 can be used to find lower bounds of the first eigenvalue of the integral equation F(z) = λ0ak(s, z)F(s) ds.  相似文献   

8.
Suppose that f(z) = z + a2z2 + ··· + anzn + ··· is regular in the unit disc D with [f(z) f′(z)z] ≠ 0 in D, and further let α ? 0 and k ? 2. If o ¦ Re{(1 ? α)z[f′(z)f(z)] + α(1 + z[f″(z)f′(z)])}¦ dθ ? kπ for z ? D, then f(z) is said to belong to the class MV[α, k]. This class contains many of the special classes of regular and univalent functions. The authors determine the Hardy classes of which f(z), f′(z) and f″(z) belong and obtain growth estimates of an.  相似文献   

9.
10.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

11.
Let ?, ψ be elements in the predual of a W1-algebra. For their absolute value parts ¦?¦, ¦ψ¦, the estimate ∥¦?¦ ? ¦ψ¦∥ ? (2 ∥? + ψ∥ ∥? ? ψ∥)12 is obtained.  相似文献   

12.
Let C(β), S1(β), and K(β, λ) be the classes of univalent functions defined in E = {z: ¦z¦< 1}, which are convex of order β, starlike of order β and close-to-convex of order β type λ. Let f(z) = (1α)z1?1αz0z1x?2 F(z)dz, 0 ? α < 1. We discuss the properties of the function f when this function F belongs to the class K(β, λ) and its various subclasses.  相似文献   

13.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

14.
For Hp, 1 ? p < ∞, composition operators C?, defined by C?(?) = ? ° ? for ? ? Hp, ? analytic on D = {z ¦ ¦ z ¦ < 1} are considered, and their spectra determined in the case where ? is analytic on an open region containing D?.  相似文献   

15.
Let U, V be two strongly continuous one-parameter groups of bounded operators on a Banach space X with corresponding infinitesimal generators S, T. We prove the following: ∥Ut, ? Vt ∥ = O(t), t → 0, if and only if U = V; ∥Ut ? Vt∥ = O(tα), t → 0; with 0 ? α ? 1, if and only if S = Ω(T + P)Ω?1, where Ω, P, are bounded operators on X such that ∥UtΩ ? ΩUt∥ = O(tα), ∥UtP ? PUt∥ = ?O(tα), t → 0; ∥Ut ? Vt∥ = O(t) if and only if S1 ? T1 has a bounded extension to X1. Further results of this nature are inferred for semigroups, reflexive spaces, Hilbert spaces, and von Neumann algebras.  相似文献   

16.
Let (Vn, g) be a C compact Riemannian manifold without boundary. Given the following changes of metric: g′?± = g + Hess ? ± lα2(▽ ? ? ▽?), g?± = ±?g + α2Hess ?, where a is a fixed constant, we study the corresponding Monge-Ampère equations (1)±Log(¦g′?±¦ ¦g¦?1) = F(P,▽?;?), (2)±Logg??±¦ ¦g¦?1) = F(P, ▽?; ?). We first solve Eq. (2)?, under some simple assumptions on F?C. Then, using an appropriate change of functions that enables us to take advantage of the estimates just carried out for Eq. (2)?, we extend to Eq.(1)? all the results proved in our previous articles [5, 6] for the usual Monge-Ampère equation. Although equation (2)+ is not locally invertible, and does not even admit a solution for all F = λ? + ?, λ > 0, f ? C(Vn), a similar change of functions leads to partial results about Eq. (1)+, via C2 and C3 estimates for Eq. (2)+. Eventually we give some comments and errata of our previous article (P. Delanoë, J. Funct. Anal.41 (1981), 341–353).  相似文献   

17.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

18.
Let f(z), an analytic function with radius of convergence R (0 < R < ∞) be represented by the gap series ∑k = 0ckzλk. Set M(r) = max¦z¦ = r ¦f(z)¦, m(r) = maxk ? 0{¦ ck ¦ rλk}, v(r) = maxk ¦ ¦ ck ¦ rλk = m(r)} and define the growth constants ?, λ, T, t by
?λ=lim supr→R inf{log[Rr /(R?r)]?1log+log+M(r)}
, and if 0 < ? < ∞,
Tt=lim supr→R inf{[Rr /(R?r)]??log+M(r)}
. Then, assuming 0 < t < T < ∞, we obtain a decomposition theorem for f(z).  相似文献   

19.
For an indefinite quadratic form f(x1, …, xn) let P(f) denote the greatest lower bound of the positive values assumed by f for integers x1, …, xn. This paper investigates the values of P3∥d∥ for nonzero ternary forms of signature ?1 and finds two new classes of forms with P3∥d∥ > 12.  相似文献   

20.
New and more elementary proofs are given of two results due to W. Littman: (1) Let n ? 2, p ? 2n(n ? 1). The estimate ∫∫ (¦▽u¦p + ¦ut¦p) dx dt ? C ∫∫ ¦□u¦p dx dt cannot hold for all u?C0(Q), Q a cube in Rn × R, some constant C. (2) Let n ? 2, p ≠ 2. The estimate ∫ (¦▽(t)¦p + ¦ut(t)¦p) dx ? C(t) ∫ (¦▽u(0)¦p + ¦ut(0)¦p) dx cannot hold for all C solutions of the wave equation □u = 0 in Rn x R; all t ?R; some function C: RR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号