首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The microwave spectra of 3-aminopropanol and three of its deuterium substituted isotopic species have been investigated in the 26.5 to 40 GHz frequency region. The rotational spectrum of only one conformer has been assigned in which presumably a hydrogen bond of the OH---N type exists. The rotational spectra of a number of excited vibrational states have been observed and assignments made for some of these excited states. The average intensity ratio for the rotational transitions between the ground and excited vibrational states indicates that the first excited state is about 120 cm?1 above the ground state.and the next higher state is roughly 200 cm?1 above the ground vibrational state. The dipole moment was determined from the Stark effect measurements to be 3.13 ± 0.04 D with its principal axes components as |μa| = 2.88 ± 0.03 D, |μb| = 1.23 ± 0.04 D and |μc| = 0.06 ± 0.01 D. The possibility of another conformer where the hydrogen bond could be of NH---O type was explored, but the spectra of such a conformer could not be identified.  相似文献   

2.
The microwave spectrum of tetrahydropyran-4-one has been studied in the frequency region 18 to 40 GHz. The rotational constants for the ground state and nine vibrationally excited states have been derived by fitting a-type R-branch transitions. The rotational constants for the ground state are (in MHz) A = 4566.882 ± 0.033, B = 2538.316 ± 0.003, C = 1805.878 ± 0.004. From information obtained from the gas-phase far-infrared spectrum and relative intensity measurements, these excited states are estimated to be ~ 100 cm?1 above the ground state for the first excited state of the ring-bending and ~ 185 cm?1 for the first excited state of the ring-twisting mode. Stark displacement measurements were made for several transitions and the dipole moment components determined by least-squares fitting of the displacements: (in Debye) |μa| = 1.693 (0.001), |μb| = 0.0, |μc| = 0.300 (0.013) yielding a total dipole moment μtot = 1.720 (0.003). A model calculation to reproduce the rotational parameters indicates that the data are consistent with the chair conformation.  相似文献   

3.
The principles and methods of determining A0 from the Raman spectra of degenerate fundamentals of C3v molecules are outlined, and applied to the ν4 band of CD3Br to yield a value of A0 = 2.6004 ± 0.0010 cm?1.  相似文献   

4.
Emission spectra of gaseous mixtures involving isotopic species of CO2 excited by a dc discharge were recorded under Doppler-limited resolution, using a high-information Fourier Transform Interferometer, in the region 4–5 μm. In this paper are given the results concerning 34 vibrational transitions (Δv3 = 1), for 12C18O2. The band centers and the spectroscopic constants for the 39 vibrational levels involved are reported. They reproduce more than 1000 experimental wavenumbers with a RMS of the order of 2 × 10?5 cm?1 for the best vibrational transition and less than 3 × 10?4 cm?1 for most of the others. From a weighted simultaneous fit of all the experimental wavenumbers belonging to the Σ-Σ transitions, a set of molecular parameters was computed. A good reproduction of the experimental wavenumbers was obtained for all the vibrational transitions except those involving the level v3 = 9, our conclusion being that a local vibrational perturbation exists for this level.  相似文献   

5.
Microwave spectra have been studied in the ground and v5 = 1 (CC stretching mode) states of methylacetylene. From these data, dipole moments and rotational and centrifugal distortion constants have been determined, as follows: μD(0) = 0.7839 ± 0.0010 D, μD(5) = 0.7954 ± 0.0010 D, B5 = 8508.119 ± 0.003 MHz, DJ(5) = 1.8 ± 0.2 kHz, and DJK(5) = 169 ± 1 kHz. Laser Stark spectra have been obtained for the ν5 band of this molecule and from these spectra the following vibration-rotation parameters have been determined: ν50 = 93.27540 ± 0.00007 cm?1, A5 - A0 = ?227.0 ± 2.3 MHz and DK(5) - DK(0) = ?0.05 ± 0.50 MHz. The higher-J and -K states of the v5 = 1 state appear to be purturbed.  相似文献   

6.
Coherent Stokes and anti-Stokes Raman scattering are used to study the ν1 and ν2 spectral band profiles of UF6 and SF6. Most of the observed SF6 “hot” bands are assigned, leading to evaluations of the anharmonicity constants Xij: X12 = ?(2.80 ± 0.30) cm?1, X14 = ?(1.00 ± 0.15) cm?1, X15 = ?(1.00 ± 0.15) cm?1. For UF6, a tentative assignment of the “hot” bands is made: X12 = ?(1.80 ± 0.30) cm?1, X13 = ?(1.60 ± 0.30) cm?1, X14 = ?(0.20 ± 0.10) cm?1, X15 = ?(0.25 ± 0.10) cm?1, and X16 = ?(0.10 ± 0.05) cm?1. Parameters such as the vibration-rotation coupling constants are determined. For SF6: α = (7 ± 2) × 10?5 cm?1 for the ν2 band and α = ?(1.02 ± 0.01) 10?4 cm?1 for the ν1 band. The calculated spectral profiles of the coherent Stokes or anti-Stokes spectra, which are in good agreement with experimental results, give values for the resonant and nonresonant parts of the susceptibility in both molecules. They also show, in some cases, the influence of neighboring combination bands.  相似文献   

7.
The far-infrared torsional spectrum of ClONO2 (chlorine nitrate) was reexamined at 0.06-cm?1 apodized resolution. The torsional spectrum consists of a single, regularly spaced series of Q branches at 122.56 ? 2.422 v′ + 0.0296 v2 cm?1. Chlorine nitrate is planar with torsional potential constants V2 = 1900 ± 100 cm?1 and V4 = 90 ± 50 cm?1. The torsional partition function is calculated at room and stratospheric temperatures.  相似文献   

8.
The microwave spectra of SiH3PD2 have been recorded in the range 26.5–40.0 GHz. Both a- and c-type transitions were observed and assigned. The rigid rotor rotational constants were determined to be A = 37589.06 ± 0.11, B = 5315.70 ± 0.02, and C = 5258.70 ± 0.02 MHz. The barrier to internal rotation has been calculated from the A-E splittings to be 1512 ± 26 cal/mole. The dipole moment components of |μa| = 0.22 ± 0.01, |μc| = 0.56 ± 0.01, and |μt| = 0.60 ± 0.01 D were determined from the Stark effect. By using previously determined microwave data for SiH3PH2, several structural parameters have been calculated and their values are compared to similar ones in other compounds. The Raman (0–2500 cm?1) spectra of gaseous, liquid, and solid SiH3PH2 and gaseous SiH3PD2 have been recorded and interpreted in detail on the basis of Cs molecular symmetry.  相似文献   

9.
Emission spectra of six isotopic species of CO2 excited by dc discharge were recorded under Doppler limited resolution using the Fourier transform spectrometer of the Laboratoire d'Infrarouge in the 4.5-μm region. In this paper, the results concerning 12C16O18O are given. The band centers and the spectroscopic constants for 19 levels involved in vibrational transitions Δv3 = 1 are reported. They reproduce 853 experimental wavenumbers with a RMS of the order of 2 × 10?5 cm?1 for the best vibrational transition, less than 1 × 10?4 cm?1 for most of the others. From experimental wavenumbers, to determine molecular parameters, it is shown that it is impossible to include in the same fit all the transitions Σ-Σ until v3 = 10 using a polynomial representation of the rovibrational energy, the responsible phenomenon being the small Fermi resonance which occurs on Σ levels. Nevertheless, the 321 wavenumbers belonging to the first four vibrational transitions are satisfactorily reproduced by the model.  相似文献   

10.
The multiplet splitting patterns of microwave transitions in the ground state and the first two torsional excited states of CH3OCH3, CD3OCD3, and CD3OCH3 were analyzed in terms of the semirigid rotor models C2vF-C3vT-C3vT and C3F-C3vT-C3vT?. The following nonzero potential coefficients were obtained for CH3OCH3: V30 = V03 = 909.05 ± 0.49 cm?1, V33 = 5.06 ± 1.60 cm?1; for CD3OCH3: V30(CD3) = 897.18 ± 2.41 cm?1, V03(CH3) = 910.45 ± 0.33 cm?1; for CD3OCD3: V30 = V03 = 897.00 cm?1. These results are compared to earlier microwave studies of these molecules.  相似文献   

11.
An infrared-infrared double-resonance technique, employing the sidebands produced by electro-optic amplitude modulation of a single-frequency CO2 laser, is used to observe the second-order Stark effect of the ν2asR(2, 0) transition of 15NH3. The technique enables the Stark shifts in ground and vibrationally excited states to be observed separately and yields the electric dipole moments: μ(v2 = 1) = 1.253 ± 0.003 D, μ(v = 0) = 1.469 ± 0.004 D. The relative intensity distribution, linewidths, and line shapes of features in the double-resonance Stark spectra are also examined.  相似文献   

12.
The vibrational relaxation of the A 2Σ state of OD has been studied in the low translational temperature environment of an argon free-jet (Ttrans near 5 K). Using laser induced fluorescence (LIF), the absolute vibrational relaxation rate coefficients were measured for OD A2Σ (ν′) to be 7.1 ± 2.6 × 10?11, 5.9 ± 1.4 × 10?11, and 2.7 ± 1.1 × 10?11 cm3 s?1 for the ν = 3, 2 and 1 states, respectively. State-to-state relaxation rate coefficients were also obtained for the ν= 1, ? = 1 level going to ν= 0, ? levels in the A2Σ manifold. The rotational relaxation rate coefficient for ν= 1, ?= 1 in the A state of OD was found to be 9.6 ± 1.0 × 10?11cm3s?1. These values are consistent with values measured for OH A2Σ, and the total loss rates are near the capture rate coefficient value. The vibrational relaxation rate coefficients kν appear to be governed by the vibrational energy of the molecule rather then by interaction with nearby dissociative states such as the a4Σ state. The relative Einstein A factors for the A2σ (ν = 3) state of OD were determined and compared with the available calculated value.  相似文献   

13.
The microwave spectrum of oxiranecarboxaldehyde (glycidaldehyde) has been studied in the 8–40 GHz region. Transitions in the ground and first seven excited states of the torsional motion of the aldehyde group have been assigned for the species with the oxygen atom of the aldehyde group trans to the oxirane ring. The v = 0 to v = 1 torsional excitation energy is estimated to be 140 ± 10 cm?1. The population of any other torsional conformer is less than 5% of the trans species at 200 K. Structural parameters were derived from rotational constants of the three singly substituted 13C species, whose spectra were observed in natural abundance. Substitution parameters are rCC(ring) = 1.453 ±0.025 A?, rCC(ald.) = 1.469 ± 0.010 A?, ∠CCC = 119.8 ± 2.0°. The dipole moments determined by means of the Stark effect are μa = 1.932 ± 0.005 D, μb = 1.511 ± 0.017 D, and μc = 0.277 ± 0.156 D, with μt = 2.469 ± 0.031 D.  相似文献   

14.
We have recorded the 5350 Å (30, 0) band of the iodine spectrum with high resolution by means of Fourier transform spectroscopy. The rotational lines in the P and R branches were measured to J = 165 with reference to uranium standards emitted by a hollow cathode. The differences between the two sets of measurements were less than 0.001 cm?1, and the standard deviation between the observed wavenumbers and those calculated with the spectroscopic constants Bv, Dv, and Hv is 0.0007 cm?1. The precision reached is an order of magnitude greater than in previously published data, and the constants Hv of the iodine absorption spectrum have been determined for the first time. This work shows that the use of Fourier transform spectroscopy is particularly powerful for molecular absorption studies in the visible region where, although the multiplex gain is lost, the throughput gain remains, and this enables the performance to approach that achieved in the infrared. This method can be expected to open up not only significant new spectroscopic experiments, but it also allows a complete high-precision remeasurement of the existing molecular spectra in the visible and uv (electronic rotational-vibrational transitions).  相似文献   

15.
The absolute intensities of the transitions 401III←000 and 411III←010 of CO2 have been measured from spectra obtained under high resolution. Both the vibration-rotation line intensities and the integrated band intensities are reported. The rotationless transition moment of 401III←000 is deduced and a vibration-rotation interaction factor F(m) = 1+(4.92×10?4)m+(4.4×10?7)m2 is determined. The values obtained are: SBand(401III←000) = (25.54±0.22)×10?5 cm?2atm(293 K)?1, |R000401III| = (1.87±0.02)×10?4D, and SBand(411III←010) = (1.83±0.13)×10?5 cm?2atm(293 K)?1.  相似文献   

16.
Microwave spectra of the ground and first three excited torsional states of N-sulphinylaniline have been assigned. The variation of the inertial defect with torsional number shows the molecule to be planar. The torsional frequency has been determined as ν = 41.1 cm?1 and the barrier to internal rotation as V2 = 2.3 kcal/mole. From the splittings of the Stark lobes of some lines the values μa = 2.20 ± 0.06, μb = 0.664 ± 0.005, and μtot = 2.30 ± 0.06 were obtained.  相似文献   

17.
The A-X system of I2 has been recorded in absorption, under conditions of medium resolution, over the region 8000 – 13 400 Å. Bandheads in progressions based on v″ = 6 through 18 have been measured and assigned. A new vibrational numbering for the A state is proposed, which leads to more reliable values for the important constants of the A state: Te = 10 906 ± 3 cm?1, De = 1641 ± 3 cm?1, ωe = 92.5 ± 0.5 cm?1, ωexe = 1.20 ± 0.08 cm?1, ωeye = ?0.062 ± 0.006 cm?1.  相似文献   

18.
Barium vapor is reacted with N216O and N218O at 0.7 Torr to produce clearly distinguishable isotopic bands of BaO A1Π-X1Σ in the wavelength region of 320–415 nm. The unique vibrational numbering is determined by measuring the isotopic shift in the bandheads between Ba16O and Ba18O. Spectroscopic constants for the A1Π state are determined from the present analysis to be ν00 = 17 588 ± 15 cm?1, ωe = 442.45 ± 0.3 cm?1, and ωexe = 1.652 ± 0.009 cm?1. Uncertainties represent three standard deviations.  相似文献   

19.
The rotational transitions of trifluoroacetic acid and trifluoroacetyl fluoride were identified with radiofrequency-microwave and microwave-microwave double resonance spectroscopy. Isotopic substitution of the hydrogen atom in trifluoroacetic acid showed that the hydrogen atom is cis with respect to the CO bond. A second conformation was not found. From A,E splittings in higher vibrational levels the internal rotation barriers were calculated: for trifluoroacetic acid, V3 = 241.8 ± 0.5 cm?1 (v = 4); for trifluoroacetyl fluoride V3 = 383.6 ± 0.5 cm?1 (v = 5).  相似文献   

20.
The pure rotational spectrum of the near-spherical oblate symmetric top AsD3 has been recorded in the 20–120cm?′ region with a resolution of 2.3 × 10?3 m?1 employing an FT interferometer. Rotational transitions with 5 ? J ? 29 and 0 ? X ? 25 of the ground state (GS) and the v2 = 1 and v4 = 1 excited states have been assigned. Splittings were observed for the GS, 98, K = 3 and 6 levels, the K = 3 levels of v2 and the kl = ?2, 1, 4 and 7 levels of v4. Furthermore the x,y Coriolis coupled v2 and v4 bands, v 0 2 = 654.4149cm?1, and v 0 4 = 714.3399 cm?1, have been examined with a resolution of 2.4 × 10?3 cm?1, and ca. 2500 allowed and 336 ‘forbidden’ lines with J′max = 31 and K′max = 28 have been assigned. Appropriately weighted GS data comprising FIR lines, allowed and ‘forbidden’ (up to ΔK = ±6) GS combination differences, mmw data, and ΔJ = 0, ΔK = ±1 distortion moment transitions were fitted together, and GS parameters complete through H parameters have been determined. Two different reductions of the Hamiltonian, either with ΔK = ±6 (h3) or ΔK = ±3 (ε) off-diagonal elements, have been employed. Equivalence of these reductions up to J = 22 was established while for J > 22 the ε reduction is superior. The v2 and v4 data have been fitted with two equivalent models based on different reductions of the rovibrational Hamiltonian. In addition to the dominating x,y Coriolis resonance, ζ y 24 0.520, Δ(k ? l) = ±3 and ±6 interactions are important and were accounted for by the models. The transition moment ratio |M4: M2| =0.75 has been determined, with a positive sign of the product M 2ζ y 24 M 4. An improved r0 structure, r0(AsD) = 1.51753 Å and α0(DAsD) = 92.000°, has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号