首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the relationship between the morphology of carboxyl-functionalized polystyrene/silica (PS/SiO2) nanocomposite microspheres and the surface-enhanced Raman scattering (SERS) performance of PS/SiO2/Ag nanocomposite particles, core-shell and raspberry-like PS/SiO2 composite microspheres were used as templates to prepare PS/SiO2/Ag nanocomposite particles. The core-shell and raspberry-like structured PS/SiO2 templates were prepared via in situ sol-gel reaction by hydrolysis tetraethyl orthosilicate (TEOS) in alkali solution. Silver nanoparticles (10–50 nm) were loaded on the PS/SiO2 templates’ surface by chemical reduction. The morphology and structure of the PS/SiO2/Ag particles were characterized by TEM, SEM, X-ray diffraction (XRD), and ultraviolet-visible (UV-vis) spectroscopy. Rhodamine 6G (R6G) was selected as a model chemical to study the enhancement performance of substrate constructed by PS/SiO2/Ag nanocomposite. Results indicated that the PS/SiO2/Ag nanocomposite prepared based on the core-shell templates showed higher SERS activity. The beneficial effect was associated with a lower specific area of core-shell structure and the larger average diameter of nanosilvers than that of the raspberry-like templates.  相似文献   

2.
Major processing factors in forming Fe2SiO4/SiO2 and Fe2O3/SiO2 powders via sol–gel synthesis followed by solid-state reactions are investigated. The results clearly indicate that the chemical compositions of the precursors, the ratio of the precursors, the nature of the catalyst used, and the gas atmosphere during solid-state reactions can all affect the outcome of the reaction product(s). The formation of Fe2SiO4/SiO2 is enhanced by using the precursor iron(III) acetylacetonate as the Fe source with the precursor ratio of iron(III) acetylacetonate to tetraethyl orthosilicate being 1:1 and the addition of formic acid. Otherwise, crystalline Fe and Fe3C are formed in place of Fe2SiO4. By altering the gas atmosphere during solid-state reactions from argon to oxygen, the reaction products change from Fe2SiO4/SiO2 to Fe2O3/SiO2. All of the observed phenomena can be rationalized via the degree of mixing of the Fe–O and Si–O domains at the molecular level in the gel network during sol–gel reactions and the presence of a reducing or oxidizing atmosphere during the solid-state reaction.  相似文献   

3.
The silica nanoparticles were prepared by the sol–gel process, and then twice modified and grafted by polyethylenimine (PEI) on their surface. After quaternary ammonium reaction and chelated copper reaction, the PEI/SiO2, QPEI/SiO2, PEI–QPEI/SiO2 and Cu (II)/PEI–QPEI/SiO2 nanopowders were obtained in turn. The morphology and structure of the products were characterized through SEM, EDX, HRTEM, FTIR and element analysis. At the same time, the antibacterial activity of the products to E. coli and Candida were evaluated through quantification and qualitative ways, e.g. microcalorimetric method and culture dish method. The results suggested that the Cu (II)/PEI–QPEI/SiO2, a novel three-component functional nanopowder, presented the best antibacterial activity to both E. coli and Candida duo to the synergistic sterilization capability of the ammonium salt and copper ions, compared with other products. It indicated that the Cu (II)/PEI–QPEI/SiO2 nanopowder could be a novel antibacterial nanomaterial to widely application in preventing and minimizing bacteria of the organism and environment in future.  相似文献   

4.
In this work we show the synthesis and characterization of TiO2 and TiO2/SiO2 nanoparticles synthesized by sol–gel method using HF and HCl as catalysts. The obtained nanoparticles were analyzed by N2 adsorption–desorption isotherms, transmission electronic microscopy, Ultraviolet–visible spectroscopy and X-ray diffractometry. Mesoporous, homogeneously polycondensed TiO2/SiO2 materials, containing nanocrystalline anatase phase with band gap similar to pure titania were obtained. Films of the powdered oxides were applied to assemble dye sensitized solar cells that presented electrical parameters, Fill Factor and efficiencies similar to devices obtained by only TiO2. The sol–gel route arises as an alternative way to prepare TiO2/SiO2 materials for solar cells.  相似文献   

5.
High-density polyethylene (HDPE) containing various volume fractions (0–20 vol%) of aluminum nitride nanoparticles (n-AlN) is prepared by melt mixing. Structural and morphological characterizations of the prepared composites are carried out by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and atomic force microscopy (AFM). Thermal stability and degradation kinetics of HDPE/AlN (nano) composites are investigated by Thermogravimetric analysis (TG). HR-TEM micrographs confirm fairly uniform dispersion of AlN nanoparticles, as well as the existence of long interconnected chain-like aggregates. AFM images also confirm homogeneous dispersion of n-AlN in the polymer matrix. Roughness analysis from the AFM data indicates the presence of substantial undulation from the mean surface level. Thermogravimetric data indicate small improvement in the thermal stability of the composites. Kinetic parameters, viz., the activation energy (E a), frequency factor (A), and reaction order (n) are estimated using the isoconversional methods of Kissinger, Flynn–Wall–Ozawa (FWO), KAS, and Friedman. Activation energies (E a) calculated by the above four models display nearly similar features and are enhanced by the presence of AlN nanoparticles. Kinetics of degradation of HDPE-AlN (nano) composites follows a first-order reaction.  相似文献   

6.
Tungsten-based catalysts of different preparations mixed with TiO2 support were investigated in the metathesis of ethylene and trans-2-butene to propylene. The catalytic activity of silica-supported tungsten oxide catalyst (WO3/SiO2) mixed with TiO2 additional support had higher efficiency than that of mixed SiO2-TiO2 supported tungsten oxide (WO3/SiO2-TiO2). The clean area of the TiO2 additional support, which provides more space for tungsten migration, is an important key to explain the improved catalytic activity, due to the higher fraction of the isolated surface tetrahedral tungsten oxide species and better dispersion of the tungsten oxide species observed by FT Raman spectroscopy. In addition to the synergistic effect of the additional TiO2 support on the metathesis activity, the similar synergy was also observed for the one–third diluted catalysts with additional SiO2. It has been found that the synergistic effect exerted by the presence of additional SiO2 support predominates over the one-third dilution effect of catalyst concentration. Thus, adding an additional support is another simple way to improve the catalytic activity of the catalysts and makes great benefit for being used in real chemical industry.  相似文献   

7.
In comparison to stimuli-responsive, multi-functional nanoparticles (NPs) from synthetic polymers, such NPs based on sustainable, naturally occurring polysaccharides are still scarce. In the present study, stable stimuli-responsive, fluorescent and magnetic NPs were fabricated using cellulose stearoyl esters (CSEs) consisting of cellulose and stearoyl groups. The multifunctional NPs with the average diameters between 80 and 250 nm were obtained after facile nanoprecipitation using CSE solutions containing Fe3O4-NPs. Using the aqueous solution of fluorescent rhodamine B as precipitant, NPs with rhodamine B on NP surface were obtained. Rhodamine B could be released depending on the temperature. In comparison, stearoylaminoethyl rhodamine B can be encapsulated in CSE-NPs, which renders obtained NPs reversible fluorescence in response to UV illumination and heat treatment.  相似文献   

8.
A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671–675, 2010; Xia et al. ACS Nano 5(11):9074–9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic—and by extension biological—entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography–mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66?±?0.23 and 4.44?±?0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further conclusions on their potential impact on health. Graphical Abstract
The basic principle of SPME/GC-MS method for characterization of nanoparticles surface adsorption forces  相似文献   

9.
In this study, we report here a general protocol for making core-shell magnetic Fe3O4/SiO2-MPS/MIPs (MPS = 3-(methacryloxyl) propyl trimethoxysilane, MIPs = molecularly imprinted polymers, Fe3O4/SiO2-MPS as core, MIPs as shell) via a surface molecular imprinting technique for optical detection of trace λ-cyhalothrin. The fluorescent molecularly imprinted polymer shell was first prepared by copolymerization of acrylamide with a small quantity of allyl fluorescein in the presence of λ-cyhalothrin to form recognition sites without doping. The magnetic Fe3O4/SiO2-MPS/MIPs exhibited paramagnetism, high fluorescence intensity, and highly selective recognition. Using fluorescence quenching as a detecting tool, Fe3O4/SiO2-MPS/MIPs were successfully applied to selectively and sensitively detect λ-cyhalothrin, and a linear relationship could be obtained covering a wide concentration range of 0–50 nM with a correlation coefficient of 0.9962 described by the Stern-Volmer equation. The experimental results of practical detection revealed that magnetic Fe3O4/SiO2-MPS/MIPs as an attractive recognition element was satisfactory for determination of trace λ-cyhalothrin in honey samples. This study, therefore, demonstrated the potential of MIPs for detection of λ-cyhalothrin in food.  相似文献   

10.
The density of surface states at Si?SiO2 interface is examined for dry and wet oxidization process on 〈111〉 silicon substrate. The trivalent silicon centers are probably responsible for thermal and radiation generated surface states at the Si?SiO2 interface. The dependence of the radiation induced surface state density is compared for various oxide thicknesses and oxidization methods used.  相似文献   

11.
To investigate the effect of surface functionality on the morphology of polymer/silica composite, poly(styrene-alt-maleic anhydride) (SMA) spheres prepared via precipitation polymerization method was employed. In water/ethanol solution, diethanolamine (DEA) was used to catalyze the hydrolysis reaction of tetraethoxysilane (TEOS), and rambutan-like poly(styrene-alt-maleic anhydride)/silica (SMA/SiO2) microspheres were synthesized through in situ sol–gel process. The obtained structure and morphology were characterized by FTIR, NMR, TEM, SEM, and TGA. The results showed that the hydrolyzed SMA chains on the surface was crucial to the nucleation and growth of silica, and the morphologies of SMA/SiO2 composite microspheres can be controlled by the amount of DEA and the ratio of SMA/TEOS. In addition, the SMA/SiO2 microspheres were used to prepare hierarchical structure of SMA/SiO2/Ag particles, which were utilized for the construction of surface-enhanced Raman scattering substrate (SERS).  相似文献   

12.
13.
BaTiO3:(5 %)Eu3+ nanoparticles and BaTiO3:(5 %)Eu3+@SiO2 composites were synthesized by the solvothermal method. The effects on the structure, morphology and luminescent properties were studied using samples with different molar ratios of BaTiO3:(5 %)Eu3+@SiO2: 60:40, 50:50, 40:60, 30:70, 20:80, 10:90, 08:92, 6.5:93.5, 05:95, and 1.5:98.5. When the amount of silica in the composites was increased, the orange emission of Eu3+ increased, too; this was observed by exciting the charge transfer band centered at 283 nm. Furthermore, an increase in the intensity of the emission was obtained under excitation at 394 nm as a consequence of the improvement in the crystallinity of the samples. The presence of silica and the degree of crystallinity of the samples were determined through the Fourier transform infrared spectra and X-ray diffraction patterns. All of the results suggest that our ceramic material could be a good candidate for biomedical applications such as biolabeling, since the luminescence of BaTiO3:(5 %)Eu3+@SiO2 composites have an emission intensity higher than that of nanoparticles composed solely of BaTiO3:Eu3+. This work demonstrates that BaTiO3:Eu3+@SiO2 composites have an emission intensity higher than that of nanoparticles composed solely of BaTiO3:Eu3+.  相似文献   

14.
The present contribution deals with the Raman spectra and structure of Na2O–MgO–CaO–SiO2 glasses. Six glasses with the trisilicate overall composition 15Na2xMgO·(10–x)CaO·75SiO2 (x = 0, 2, 4, 6, 8, 10) were studied. The structure of studied glasses was described by the thermodynamic model of Shakhmatkin and Vedishcheva. From the 27 components with the stoichiometry given by the composition of stable crystalline phases, only eight were found in significant abundance in the studied glasses—namely: SiO2, 2MgO·SiO2 (M2S), MgO·SiO2 (MS), Na2O·3CaO·6SiO2 (NC3S6), Na2O·CaO·5SiO2 (NCS5), Na2O·MgO·4SiO2 (NMS4), Na2SiO2 (NS), and Na2O·2SiO2 (NS2). The correlation analysis points out that the strong positive correlations between the equilibrium molar amounts of: {M2S–MS–SiO2}, {NC3S6–NCS5}, and {NMS4–NS–NS2}. From the components of significant abundance, only the content of MS and NC3S6 change significantly within the studied compositional series. These two components were identified with the result of the principal component analysis of Raman spectra that indicated the presence of two independent spectral components. Using the method of Malfait the partial Raman spectra of MS and NC3S6 components were found. The obtained results very well reproduce the experimental Raman spectra and confirmed in such way the thermodynamic model.  相似文献   

15.
The heat of reaction and kinetics of curing of diglycidyl ether of bisphenol-A (DGEBA) type of epoxy resin with catalytic amounts of ethylmethylimidazole (EMI) have been studied by differential power-compensated calorimetry as a part of the program for the study of process monitoring for composite materials. The results were compared with those from 1∶1 and 1∶2 molar mixtures of DGEBA and EMI. A method of determination of heat of reaction from dynamic thermoanalytical instruments was given according to basic thermodynamic principles. The complicated mechanism, possibly involving initial ionic formation, has also been observed in other measurements, such as by time-domain dielectric spectroscopy. The behavior of commercially available DGEBA resin versus purified monomeric DGEBA were compared. The melting point of purified monomeric DGEBA crystals is 41.4 °C with a heat of fusion of 81 J/g. The melt of DGEBA is difficult to crystallize upon cooling. The glass transition of purified DGEBA monomer occurs around ?22 °C with aΔC p of 0.60 J/K/g.  相似文献   

16.
The kinetics of HCl oxidation at 350–425°C over the supported CuCl2-KCl-LaCl3 catalyst has been investigated using a gradientless technique. The HCl oxidation kinetics in the Deacon and methane oxychlorination reactions has been studied in order to substantially extend the \(Cl_2 \left( {P_{Cl_2 } } \right)\) partial pressure variation range. When the reaction rate is independent of P HCl, HCl oxidation on the copper-potassium catalysts is described by the same rate equation, irrespective of whether the catalyst contains lanthanum or not. The introduction of lanthanum chloride increases the HCl oxidation rate by one order of magnitude. The rate equation obtained has significant advantages over the equation corresponding to the Kenney-Slama equation. The kinetic features of HCl oxidation over the lanthanum-containing catalyst, whether the process depends on P HCl or not, can be explained in terms of the superposition of the Kenney-Slama dissociative mechanism and the catalytic mechanism suggested here. The role of lanthanum chloride in both HCl oxidation pathways is considered.  相似文献   

17.
Spectrophotometric studies have revealed that ozone oxidizes Cr(III) into Cr(VI), Fe(III) into Fe(VI), Mn(VI) into Mn(VII), and Np(VI) into Np(VII) in the concentrated aqueous silicate solutions. Cr(III) oxidation is accelerated in alkaline-silicate and alkaline solutions as compared to neutral silicate solution. Ferrate and permanganate ions are unstable in Na2SiO3 solutions (0.5–1.3 mol/L of the silicate). Neptunium(VII) ions formed in the course of ozonation are stable in Na2SiO3 solution (1 mol/L) upon drying in air to form solid vitreous mass.  相似文献   

18.
The physicochemical characteristics of nitrogen-modified TiO2/SiO2 and its photocatalytic activity in the oxidation of methyl orange (MO) were studied. Nitrogen-modified TiO2/SiO2 had higher activity than the unmodified samples. The photocatalytic oxidation of MO obeys the Langmuir-Hinshelwood model.  相似文献   

19.
Decomposition yields of tetracycline hydrochloride /TC.HCl/ and chlorotetracycline hydrochloride /ClTC?HCl/ in methanol solution saturated with Ar or N2O were determined. Rate constants of the reaction es with some antibiotics were obtained: $$\begin{gathered} k/e_s^ - + ClTC \cdot HCl/ = 2 \cdot 49 \times 10^8 dm^3 \cdot mole^{ - 1} \cdot s^{ - 1} ; \hfill \\ k/e_s^ - + TC \cdot HCl/ = 2 \cdot 86 \times 10^8 dm^3 \cdot mole^{ - 1} \cdot s^{ - 1} \cdot \hfill \\ \end{gathered} $$ On the basis of the diffence between decomposition yields: ΔG=G?TC.HCl?G?ClTC.HCl′ 7-C?Cl group decomposition yield and the rate constant $$k/e_s^ - + Cl - C - 7/ = 7 \cdot 94 \times 10^8 dm^3 \cdot mole^{ - 1} \cdot s^{ - 1} $$ were determined. It was demonstrated by1H NMR that the radical formed by degradation of 7-C?Cl group is recombined with the H atoms leading to ClTC.HCl being converted into tetracycline hydrochloride /TC.HCl/.  相似文献   

20.
Herein, a study of the plasma electrolytic oxidation (PEO) of niobium in an anodising bath composed of potassium silicate (K2SiO3) and potassium hydroxide (KOH) is reported. The effects of the K2SiO3 concentration in the bath and the process voltage on the characteristics of the obtained oxide layers were assessed. Compact, barrier-type oxide layers were obtained when the process voltage did not exceed the breakdown potential of the oxide layer. When this threshold was breached, the morphology of the oxide layer changed markedly, which is typical of PEO. A significant amount of silicon, in the form of amorphous silica, was incorporated into the oxide coatings under these conditions compared with the amount obtained with conventional anodising. This surface modification technique led to an improvement in the corrosion resistance of niobium in Ringer’s solution, regardless of the imposed process conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号