首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leading heavy-top two-loop corrections to theZb \(\bar b\) vertex are determined from a direct evaluation of the corresponding Feynman diagrams in the largem t limit. The leading one-loop top-mass effect is enhanced by \([{{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} \mathord{\left/ {\vphantom {{1 + G_\mu m_t^2 ({{9 - \pi ^2 } \mathord{\left/ {\vphantom {{9 - \pi ^2 } 3}} \right. \kern-0em} 3})} {(8\pi ^2 \sqrt 2 )}}} \right. \kern-0em} {(8\pi ^2 \sqrt 2 )}}]\) . Our calculation confirms a recent result of Barbieri et al..  相似文献   

2.
We show how to prove and to understand the formula for the “Pontryagin” indexP for SU(N) gauge fields on the HypertorusT 4, seen as a four-dimensional euclidean box with twisted boundary conditions. These twists are defined as gauge invariant integers moduloN and labelled byN μv (=?N μv ). In terms of these we can write (ν∈#x2124;) $$P = \frac{1}{{16\pi ^2 }}\int {Tr(G_{\mu v} \tilde G_{\mu v} )d_4 x = v + \left( {\frac{{N - 1}}{N}} \right) \cdot \frac{{n_{\mu v} \tilde n_{\mu v} }}{4}} $$ . Furthermore we settle the last link in the proof of the existence of zero action solutions with all possible twists satisfying \(\frac{{n_{\mu v} \tilde n_{\mu v} }}{4} = \kappa (n) = 0(\bmod N)\) for arbitraryN.  相似文献   

3.
AtT=0 a perfect Mössbauer line has natural line widthΓ=?/τ n . However, with rising temperature the width increases. The reason of the line broadening is the second order Doppler effect which causes a stochastic frequency modulation of theγ-radiation, reflecting the thermal motion of the Mössbauer atom. Following Josephson in treating the second order Doppler shift as a mass changeΔM=E n/c2 of theγ-emitting atom caused by the loss of nuclear excitation energy E n , and using the well known relaxation formalism for calculating theγ-frequency spectrum, the line broadeningΔ Γ is evaluated within the framework of harmonic lattice theory. For a parabolic lattice frequency spectrum with Debye-temperature Θ one obtains $$\Delta {\Gamma \mathord{\left/ {\vphantom {\Gamma \Gamma }} \right. \kern-\nulldelimiterspace} \Gamma } = \left( {{{\tau _n } \mathord{\left/ {\vphantom {{\tau _n } {\tau _c }}} \right. \kern-\nulldelimiterspace} {\tau _c }}} \right) \cdot \left( {{{E_n } \mathord{\left/ {\vphantom {{E_n } {Mc^2 }}} \right. \kern-\nulldelimiterspace} {Mc^2 }}} \right) \cdot F\left( {{T \mathord{\left/ {\vphantom {T \Theta }} \right. \kern-\nulldelimiterspace} \Theta }} \right),where\tau _c = {{\rlap{--} h} \mathord{\left/ {\vphantom {{\rlap{--} h} k}} \right. \kern-\nulldelimiterspace} k}\Theta $$ is the correlation time of the lattice vibrations. The functionF(T/Θ) may be expanded in powers ofT/Θ, yielding $$F\left( {{T \mathord{\left/ {\vphantom {T \Theta }} \right. \kern-\nulldelimiterspace} \Theta }} \right) = 9720\pi \left( {{T \mathord{\left/ {\vphantom {T \Theta }} \right. \kern-\nulldelimiterspace} \Theta }} \right)^7 forT<< \Theta $$ and $$F\left( {{T \mathord{\left/ {\vphantom {T \Theta }} \right. \kern-\nulldelimiterspace} \Theta }} \right) = 2.7\pi \left( {{T \mathord{\left/ {\vphantom {T \Theta }} \right. \kern-\nulldelimiterspace} \Theta }} \right)^2 forT > > \Theta $$ , respectively. Although unavoidable, the line broadening is obviously too small to be observable by means of the present experimental technique.  相似文献   

4.
The data on the charge-exchange reaction K +Xe → K 0 pXe′, obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK 0 resonance with mass near 1538 MeV is confirmed. The statistical significance of the signal reaches some 8 (6) standard deviations when estimated as $ {S \mathord{\left/ {\vphantom {S {\sqrt B \left( {{S \mathord{\left/ {\vphantom {S {\sqrt {B + S} }}} \right. \kern-0em} {\sqrt {B + S} }}} \right)}}} \right. \kern-0em} {\sqrt B \left( {{S \mathord{\left/ {\vphantom {S {\sqrt {B + S} }}} \right. \kern-0em} {\sqrt {B + S} }}} \right)}} $ . The mass and intrinsic width of the Θ+ baryon are measured as m = 1538 ± 2 MeV and Γ = 0.39 ± 0.10 MeV.  相似文献   

5.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

6.
E P Bashkin 《Pramana》1987,28(5):601-601
As the temperature is lowered we get an interesting temperature region? d?T?? 2/mr 0 2 (where? d is the quantum degeneracy temperature,m the mass of a gas molecule,r 0 the radius of interparticle interaction) in which the thermal de Broglie wavelength Λ of a particle is considerably greater than its sizer 0 though Λ turns out to be less than the mean interparticle distanceN ?1/3?Λ?r 0. Although the gas molecules obey the classical Boltzmann-Maxwell statistics the system as a whole begins to exhibit a larger number of essentially quantum macroscopic collective features. One of the most interesting and dramatic features is the possibility of propagation of weakly damped spin oscillations in spin-polarized gases (external magnetic field, optical pumping). Such oscillations can propagate both in the low-frequencyθτ?1 regime and the high frequencyθτ?1. The last case is highly non-trivial for a Boltzmann gas with a short range interaction between particles. The weakness of relaxation damping of spin modes implies that the degree of polarization is high enough 1>/|α|?|a|/Λ, whereα=(N +?N ?)N,a is the two-particles-wave scattering length. Under these conditions the spectrum of magnons has the form (Bashkin 1981, 1984; Lhuillier and Laloe 1982) 1 $$\omega = \Omega _H + \left( {{{K^2 \nu _{\rm T}^2 } \mathord{\left/ {\vphantom {{K^2 \nu _{\rm T}^2 } {\Omega _{int} }}} \right. \kern-\nulldelimiterspace} {\Omega _{int} }}} \right)\left( {{{1 - i} \mathord{\left/ {\vphantom {{1 - i} {\Omega _{int} }}} \right. \kern-\nulldelimiterspace} {\Omega _{int} }}\tau } \right), \Omega _{int} = {{ - 4\pi ahN\alpha } \mathord{\left/ {\vphantom {{ - 4\pi ahN\alpha } m}} \right. \kern-\nulldelimiterspace} m}, \nu _{\rm T}^2 = {T \mathord{\left/ {\vphantom {T m}} \right. \kern-\nulldelimiterspace} m}$$ where Ω H is the Larmor precession frequency for spins in the magnetic fieldH. Collisionless Landau damping restricts the region of applicability of (1) with not too large wave vectorsKv T?|Ωint|. The existence of collective spin waves has been experimentally confirmed in NMR-experiments with gaseous atomic hydrogen H↑ (Johnsonet al 1984). The presence of undamped spin oscillations means automatically the existence of long range correlations for transverse magnetization. Such correlations decrease with the distance according to the power law 2 $$\delta _{ik} \left( r \right) = 2\left| a \right|\frac{{\left( {\beta N\alpha } \right)^2 }}{\gamma }\delta _{ik} $$ . Hereβ is the molecule magnetic moment. Spin waves being even damped can nevertheless reveal themselves atT?? 2/mr 0 2 or when |α|?r 0/Λ. The first experimental discovery or damped spin waves in gaseous3He↑ has been done in Nacheret al 1984. Oscillations of magnetization can also propagate in some condensed media such as liquid3He-4He solutions, semimagnetic semiconductors etc.  相似文献   

7.
We report on the p T dependence of nuclear modification factors (R CP) for K S 0 , ??, ?? and the $\bar NK_S^0 $ ratios at mid-rapidity from Au+Au collisions at $\sqrt {s_{NN} } $ = 39, 11.5 and 7.7 GeV. At $\sqrt {s_{NN} } $ = 39 GeV, the R CP data show a baryon/meson separation at intermediate p T and a suppression for K S 0 for p T up to 4.5 GeV/c; the $\bar \Lambda K_S^0 $ shows baryon enhancement in the most central collisions. However, at $\sqrt {s_{NN} } $ = 11.5 and 7.7 GeV, R CP shows less baryon/meson separation and $\bar NK_S^0 $ shows almost no baryon enhancement. These observations indicate that the matter created in Au+Au collisions at $\sqrt {s_{NN} } $ = 11.5 or 7.7 GeV might be distinct from that created at $\sqrt {s_{NN} } $ = 39 GeV.  相似文献   

8.
É. G. Batyev 《JETP Letters》2002,76(12):711-715
The exchange interaction and effective mass of fermionic excitation in a low-density (r S ? 1) system of two-dimensional electrons are estimated from simple considerations. For the ratio of effective (renormalized due to interaction) to band mass, the dependence ${{m^* } \mathord{\left/ {\vphantom {{m^* } m}} \right. \kern-0em} m} = ({A \mathord{\left/ {\vphantom {A {\sqrt {r_S } }}} \right. \kern-0em} {\sqrt {r_S } }})\exp (\alpha \sqrt {r_S } )$ is obtained, where A and α are constants on the order of unity. The effective g factor is independent of r S and is larger than its bare value in the two-valley case (silicon). Comparison with experimental data shows a qualitative agreement with silicon.  相似文献   

9.
Perturbative QCD is shown to be in quantitative agreement with one-and two-jet production data in the range \(27 \lesssim \sqrt s \lesssim 900GeV\) GeV forP T(jet)?5 GeV. The integrated jet yield above a fixedP T(parton)?3 GeV accounts for the \(\bar pp\) inelastic cross section rise in the same range. QCD predictions for jet yields up to \(\sqrt s = 40TeV\) are presented and the role of non-perturbative corrections, ultimately saving unitarity, is briefly discussed.  相似文献   

10.
Properties of secondaries associated with a high-p T charged trigger particle (3<p T <5 GeV/c) were studied for αp and αα interactions at c.m. energies \(\sqrt s = 88\) GeV and 125 GeV, respectively. Thep T distributions of secondaries in the away-jet and trigger-jet regions were compared with those for high-p T pp interactions. No statistically significant differences were seen, except at lowp T . Momentum and angular distributions of spectator and leading protons were studied as a function of charge and rapidity of the trigger hadron. The observed correlations between trigger charge and number of spectator protons provide evidence of valence quark contributions to the trigger jet.  相似文献   

11.
L P Pitaevskii 《Pramana》1987,28(5):589-589
Landau’s criterion plays an important role in the theory of superfluidity. According to this criterion, superfluid motion is possible if \(\tilde \varepsilon \left( p \right) \equiv \varepsilon \left( p \right) + pV > 0\) along the curve of the spectrum?(p) of excitations. For4He it means thatv<v c,v c≈60 m/sec.v s is equal to the tangent of the slope to the roton part of the spectrum. The question of what happens to the liquid when this velocity is exceeded, as far as we know, remains unclear. We shall show that for small excesses abovev c a one-dimensional periodic structure appears in the helium. A wave vector of this structure oriented opposite to the flow and equal toρ c/h whereρ c is the momentum at the tangent point. The quantity \(\tilde \varepsilon \left( p \right)\) is the energy of excitation in the liquid moving with velocity v. Inequality of Landau ensures that \(\tilde \varepsilon \) is positive. If \(\tilde \varepsilon \) becomes negative, then the boson distribution function \(n\left( {\tilde \varepsilon } \right)\) becomes negative, indicating the impossibility of thermodynamic equilibrium of the ideal gas of rotons; therefore the interaction between them must be taken into account. The final form of the energy operator is $$\hat H = \int {\left\{ {\hat \psi + \tilde \varepsilon \left( p \right)\hat \psi + \tfrac{g}{2}\hat \psi + \hat \psi + \hat \psi \hat \psi } \right\}} d^3 x, g \sim 2 \cdot 10^{ - 38} erg.cm.$$ Then we can seek the rotonψ-operator in the formψ=ηexp(i p c r/h), determiningη from the condition that the energy is minimized. The result is (η)2=(v?v c)ρ c/g, forv>v c. The plane waveψ corresponds to a uniform distribution of rotons. It leads, however, to a spatial modulation of the density of the helium, since the density operator \(\hat n\) contains a term which is linear in the operator \(\psi :\hat n = n_0 + \left( {n_0 } \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} {A \mathord{\left/ {\vphantom {A {\hat \psi \to \hat \psi ^ + }}} \right. \kern-0em} {\hat \psi \to \hat \psi ^ + }}\) ), where |A|2ρ c 2 /2m?(ρ c). Finally we find that the density of helium is modulated according to the law $$\frac{{n - n_0 }}{{n_0 }} = \left[ {\frac{{\left| A \right|^2 \left( {\nu - \nu _c } \right)\rho _c }}{{n_0 g}}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x \approx 2,6\left[ {\frac{{\nu - \nu _c }}{{\nu _c }}} \right]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \sin \rho _c x$$ . This phenomenon can be observed, in principle, in the experiments on scattering ofx-rays in moving helium.  相似文献   

12.
Assuming the partons within the initial hadrons to have transverse momentum we have calculated in the framework of the fusion process the transverse angular distributions of the charm pairs and of the ψψ pairs produced in hadronic collisions. The transverse angle is defined as \(\cos \phi = P_{T3} \cdot P_{T4} /(|P_{T3} ||P_{T4} |)\) wherep T3 andp T4 are the transverse momenta of the charm pairs/ψψ pairs. By comparing with the data we find that the effective transverse momentum of the partons is ~ 0.6 GeV/c.  相似文献   

13.
We study the production of scalar electrons ine + e ? collisions on and above theZ resonance. By calculating the cross-section for \(e^ + e^ - \to e^ + e^ - \tilde \gamma \tilde \gamma \) we show that scalar electrons with mass above the beam energies \((\sqrt s /2)\) can be identified. In particular if a zino with mass \(m_{\tilde z}< \sqrt s - m_{\tilde \gamma } \) exists then zino production and decay can give a contribution which dominates the γ exchange contributions. We present final state distributions.  相似文献   

14.
This work demonstrates that the mean transverse momentum of charged particles at large pseudo-rapidities can be reliably derived from measurements of the complete charged-particle multiplicity distributions and using information from measurements of p T spectra at mid-rapidity by applying energy conservation requirements. As an example, the mean p T of charged particles emitted at η=4.6 is found to be 〈p T 〉=0.305 GeV/c for the 0–3% most central Au+Au collisions at $\sqrt {s_{NN} } = 130$ GeV.  相似文献   

15.
We find new operator formulas for converting Q?P and P?Q ordering to Weyl ordering, where Q and P are the coordinate and momentum operator. In this way we reveal the essence of operators’ Weyl ordering scheme, e.g., Weyl ordered operator polynomial ${_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}}$ , $$\begin{aligned} {_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}} =&\sum_{l=0}^{\min (m,n)} \biggl( \frac{-i\hbar }{2} \biggr) ^{l}l!\binom{m}{l}\binom{n}{l}Q^{m-l}P^{n-l} \\ =& \biggl( \frac{\hbar }{2} \biggr) ^{ ( m+n ) /2}i^{n}H_{m,n} \biggl( \frac{\sqrt{2}Q}{\sqrt{\hbar }},\frac{-i\sqrt{2}P}{\sqrt{\hbar }} \biggr) \bigg|_{Q_{\mathrm{before}}P} \end{aligned}$$ where ${}_{:}^{:}$ ${}_{:}^{:}$ denotes the Weyl ordering symbol, and H m,n is the two-variable Hermite polynomial. This helps us to know the Weyl ordering more intuitively.  相似文献   

16.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

17.
We calculate multireference configuration-interaction wavefunctions and the potential-energy curves for the $ {B^3}\Sigma_u^{-} $ and $ {X^3}\Sigma_g^{-} $ states of the collision-free S2 molecule and the T-shape collision complex S2?CHe using cc-pVQZ basis sets. We obtain the transition dipole moments of the $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \to {X^3}\Sigma_g^{-} } \right) $ and the Franck?CCondon factors between the vibrational levels of this two states. We evaluate the radiative lifetimes of $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \left( {{\upsilon^{\prime}} = 0 - 9} \right)} \right) $ levels of the collision complex and the collision-free molecule and compare them with the experiments. The collision provides little change in the radiative lifetimes of $ {{\text{S}}_2}\left( {{B^3}\Sigma_u^{-} \left( {{\upsilon^{\prime}} = 0 - 9} \right)} \right) $ according to the previous calculations. We obtain excellent agreement between the theoretical results and the experiments. The data calculated are very useful in the study of the microwave-driven high-pressure sulfur lamp and an S2 laser pumped by a transverse fast discharge.  相似文献   

18.
One problem in quantum ergodicity is to estimate the rate of decay of the sums $$S_k (\lambda ;A) = \frac{1}{{N(\lambda )}}\sum\limits_{\sqrt {\lambda _j } \leqq \lambda } {\left| {(A\varphi _j ,\varphi _j ) - \bar \sigma _A } \right|^k } $$ on a compact Riemannian manifold (M, g) with ergodic geodesic flow. Here, {λ j ,? j } are the spectral data of the Δ of(M, g), A is a 0-th order ψDO, $\bar \sigma _A $ is the (Liouville) average of its principal symbol and $N(\lambda ) = \# \{ j:\sqrt {\lambda _j } \leqq \lambda \} $ . ThatS k (λ;A)=o(1) is proved in [S, Z.1, CV.1]. Our purpose here is to show thatS k (λ;A)=O((logλ) ?k/2 ) on a manifold of (possibly variable) negative curvature. The main new ingredient is the central limit theorem for geodesic flows on such spaces ([R, Si]).  相似文献   

19.
Inclusive spectra of charged particles at midrapidity in Au+Au collisions at $\sqrt {s_{NN} } = 130$ GeV and 200 GeV were measured with the STAR detector at RHIC. The measured mean transverse momentum 〈p T 〉 shows a characteristic dependence on charged particle multiplicity and beam energy in Au+Au collisions that is distinctly different from pp, $p\bar p$ and e+e? collisions. A 32%±3%(syst) increase in 〈p T 〉 from pp to Au+Au collisions was observed at 200 GeV. While the charged multiplicity was found to increase by 19%±5%(syst) from $\sqrt {s_{NN} } = 130$ GeV to 200 GeV, no significant difference in 〈p T 〉 was found between the two energies. A comparison with model predictions is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号