首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the BRS identities for N = 1 supergravity in a covariant gauge. It is shown that, as in the axial gauge, the anti-symmetric part of the vierbein does contribute to the BRS identities, even though one can choose a gauge in which it does not propagate.  相似文献   

2.
R. Flume 《Nuclear Physics B》1983,217(2):531-543
It is assumed that N = 1 supersymmetric Yang-Mills fields coupled to chiral matter fields can be renormalized in a covariant Wess-Zumino gauge with a minimal number of subtractions so that the Ward identities of supersymmetry, ordinary gauge invariance and matter-field-flavour symmetries are satisfied. The chiral Yukawa couplings are supposed to remain unrenormalized. I show that on the basis of these assumptions an N = 4 extended manifestly O(4) invariant theory can be constructed with finite Yukawa and φ4 couplings. A consequence of these non-renormalizations is the vanishing of the renormalization group β function.  相似文献   

3.
The effective potential is calculated for a two dimensionalU(N) gauge theory with scalar quarks to leading order in the 1/N expansion. If there is noφ 4 interaction present, the potential is unbounded from below. If theφ 4 interaction is present, the potential is bounded from below and there is an unbroken and a spontaneously broken symmetry phase. The bound state spectrum of the unbroken phase is very similar to that of anU(N) gauge theory without theφ 4 term.  相似文献   

4.
It is shown the analysis [1] for QED in (2 + 1) dimensions with N four-component fermions in the leading and next-to-leading orders of the 1/N expansion. As it was demonstrated in [1], the range of the admissible values N, where the dynamical fermion mass exists, decreases strongly with the increasing of the gauge charge. So, in Landau gauge the dynamical chiral symmetry breaking appears forN < 3.78, that is very close to the results of the leading order and in Feynman gauge dynamical mass is completely absent.  相似文献   

5.
We derive constraints on the color-ordered amplitudes of the L-loop four-point function in SU(N) gauge theories that arise solely from the structure of the gauge group. These constraints generalize well-known group theory relations, such as U(1) decoupling identities, to all loop orders.  相似文献   

6.
《Physics letters. [Part B]》1997,415(4):349-357
It is shown that all possible N sheeted coverings of the cylinder are contained in type IIA matrix string theory as non-trivial gauge field configurations. Using these gauge field configurations as backgrounds the large N limit is shown to lead to the type IIA conformal field theory defined on the corresponding Riemann surfaces. The sum over string diagrams is identified as the sum over non-trivial gauge backgrounds of the SYM theory.  相似文献   

7.
It is shown that the Wess-Zumino term of a heterotic superstring in aN = 1,D = 10 supergravity background can be given in terms of the torsion of the background in both versions (IA and IB) of theN = 1,D = 10 supergravity theory. The gauge degrees of freedom of the background are included according to the ideas of Kaluza and Klein. Explicit expressions for the vielbein, connection, torsion, and curvature of a space with 506 bosonic and 16 fermionic coordinates are given.  相似文献   

8.
《Physics letters. [Part B]》1987,199(2):259-261
A transformation is investigated that mixes quarks with composites of N−1 antiquarks in a gauge-invariant way for QCD with gauge group SU (N). An infinite family of identities among fermionic Green functions is derived in the form of a generating functional.  相似文献   

9.
We discuss the superspace geometries which are necessary to describe on-shell O(4) and SU(4) supergravity. The relation of central charge field strengths to physical spin-zero fields is exhibited and a “new” O(4) theory is shown to exist. The version of SU(4) supergravity which uses an antisymmetric tensor gauge field is found to require modifications of ordinary superspace. Finally the Poincaré supergeometry which admits the conformal N = 4 supermultiplet is constructed. It is shown that consistency of the Bianchi identities implies the existence of dimension zero auxiliary fields which are components of a non-linear multiplet.  相似文献   

10.
The Schwinger Dyson equation for the Wilson loop is derived for a baryon in theSU(N) gauge group. The obtained equation is linearized in the largeN limit and is shown to yield the planar diagrams to the first and second order in the coupling constant square. The connection with the string model is discussed.  相似文献   

11.
It is shown that a recently-proposed solution of theSU(2) gauge theory with topological charge 3/2 is not valid. More generally, integral topological charge solutions are shown to be the only ones possible in a wide class of gauge field structures, which we solve completely.  相似文献   

12.
We prove that in a general massless N = I SYM theory off-shell Green functions exist such that Green functions of gauge invariant operators are supersymmetrically covariant. The off-shell infrared problem present in the superfield treatment of these theories is thus shown to remain a gauge artefact. The N = 2, 4 pure SYM theories are covered by this result and thus exist as N = 1 SYM theories.  相似文献   

13.
In the present paper we shall study (2+1)-dimensional ZN gauge theories on a lattice. It is shown that the gauge theories have two phases, one is a Higgs phase and the other is a confinement phase. We investigate low-energy excitation modes in the Higgs phase and clarify relationship between the ZN gauge theories and Kitaev’s model for quantum memory and quantum computations. Then we study effects of random gauge couplings (RGC) which are identified with noise and errors in quantum computations by Kitaev’s model. By using a duality transformation, it is shown that time-independent RGC give no significant effects on the phase structure and the stability of quantum memory and computations. Then by using the replica methods, we study ZN gauge theories with time-dependent RGC and show that nontrivial phase transitions occur by the RGC.  相似文献   

14.
A certain class of geometric objects is considered against the background of a classical gauge field associated with an arbitrary structural Lie group. It is assumed that the components of these objects depend on the gauge potentials and their first derivatives, and also on certain gauge-dependent parameters whose properties are suggested by the interaction of an isotopic spin particle with a classical Yang-Mills field. It is shown that the necessary and sufficient conditions for the invariance of the given objects under a finite gauge transformation are embodied in a set of three relations involving the derivatives of their components. As a special case these so-called invariance identities indicate that there cannot exist a gauge-invariant Lagrangian that depends on the gauge potentials, the interaction parameters, and the4-velocity components of a test particle. However, the requirement that the equations of motion that result from such a Lagrangian be gauge-invariant, uniquely determines the structure of these equations.  相似文献   

15.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

16.
The structure of spontaneous breaking of SU(N) gauge symmetry for grand unification is investigated. The results obtained are applied to the analysis of SU(8) symmetry for which possible ways of breaking and intermediate symmetries are considered. It is assumed that the SU(8) group unifies the subgroups of colour, standard electroweak and horizontal symmetries. We find conditions which it is necessary to impose on the vacuum expectation values of Higgs multiplets to provide an arbitrary breaking pattern of SU(N) symmetry and conserve any intermediate symmetry. If in the SU(8) models considered fermions and mirror fermions do not violate the (V-A) and (V+A) structure of weak interactions, then their masses should not be greater than ~102 GeV. It is also shown that the contributions of fermion and Higgs multiplets to the renormalization group equation for the coupling constant of any subgroup of SU(N) are identical. Renormalization group identities for the case of arbitrary SU(N) breaking are given where the contribution of Higgs multiplets have been taken into account (but they cancel each other). Using these identities one can calculate the mass values for the breaking of the intermediate symmetries in the SU(8) models, and also exclude part of the possible breaking patterns.  相似文献   

17.
《Nuclear Physics B》1986,265(1):223-252
The strong-coupling expansion of U(N) gauge theory on a D-dimensional lattice is reformulated in the limit N → ∞ through a set of diagrammatic rules directly for the free energy and Wilson loops. The strong-coupling planar diagrams are interpreted as surfaces embedded in the lattice. The large-N phase transition is related to the entropy of these surfaces. It is shown that the strong-coupling phase of the U(∞) gauge theory terminates with a phase transition of Gross-Witten type only in 2 and 3 dimensions. When D⩾4 the large-N singularity takes place in a metastable phase because of an earlier first-order transition to the weak-coupling phase of the theory.  相似文献   

18.
It is shown that the large-N limit of quantum chromodynamics in twodimensions is determined by classical equations with boundary conditions. The nonperturbative quantum spectrum of mesonic bound states is obtained from a classical equation with a simple N-dependent boundary condition on the local charge density. The simplicity of the classical correspondence is shown to be directly tied to the simplicity of the space of gauge invariant operators of the theory. Implications for other large-N models are discussed.  相似文献   

19.
It is shown in the context of a pure Yang-Mills theory that the solution of the Slavnov-Taylor identities in a general axial gauge admits counter-terms which may or may not be Lorentz invariant. It follows from the background field method that these counter-terms must be gauge invariant. The Lorentz-non-invariant counter-terms appear already at the one-loop level and depend both on the gauge parameter α and the non-covariant vector nω.  相似文献   

20.
We consider, in the light-cone gauge, the possible structure of the counterterms arising in the solution to the renormalization equation. Using the structure of these counterterms and the noncovariant formalism of the integrals as guidelines, we also examine to one-loop order the divergence and nonlocality of theN-point gluon vertex functions forN≧5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号