共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
神府煤液化油加氢精制过程中硫氮化合物分布的变化 《燃料化学学报》2016,44(1):37-43
采用实沸点蒸馏对神府煤液化油及其加氢精制油做了馏分切割,并采用GC-PFPD与GC-NCD对液化油与精制油中的硫氮化合物类型进行了分析,研究了液化油加氢精制过程中硫氮化合物分布的变化。结果表明,液化油中硫含量随窄馏分的馏程由低到高呈现"U"型分布,氮的分布基本上随窄馏分沸点温度的升高而增大,氮的含量远高于硫的含量;经过固定床加氢精制后,97%的硫和98.9%的氮得到脱除。液化油中苯并噻吩和二苯并噻吩等二环和三环化合物占93.25%;经过加氢处理之后,硫醇、硫醚、噻吩类等低沸点含硫化合物基本消失,难脱除组分主要以苯并噻吩类、二苯并噻吩类为主。液化油中含氮化合物主要以五元杂环中性氮化物为主,占54.96%;碱性氮化物主要以苯胺类为主,占23.22%,喹啉类相对较少;经过加氢处理之后,脂肪胺类含氮化合物被完全脱除,精制油中残留的氮主要以碱性氮化物喹啉类与苯胺类含氮化合物存在。 相似文献
3.
研究了变色硅胶吸附脱除氮含量为960.56μg/g模拟柴油中的碱性氮化物喹啉、苯胺和吡啶。比较了氧化铝、硅藻土、硅胶及变色硅胶对模拟柴油中喹啉的吸附脱除效果。采用XRD、低温N_2吸附-脱附和NH_3-TPD等方法对硅胶和变色硅胶进行了表征。考察了粒径、吸附温度、吸附时间、剂油质量比及共存芳香化合物(萘、苯或甲苯)对变色硅胶吸附脱除各种碱性氮化物的影响。变色硅胶吸附脱除碱性氮化物的顺序均为苯胺吡啶喹啉。吸附时间对三种氮化物的吸附脱除没有影响;吸附温度、变色硅胶粒径和共存芳香化合物对苯胺和吡啶的吸附脱除效果影响不大,对喹啉的吸附脱除效果影响较为明显;剂油质量比对三种氮化物的吸附脱除影响均较大,尤其是对喹啉影响最大。结果表明,变色硅胶吸附各种氮化物时Co能够与其中的N原子形成配位络合吸附。经焙烧再生,变色硅胶几乎完全恢复了对喹啉和吡啶的吸附脱除能力,并可多次再生,但变色硅胶再生后对苯胺的吸附能力损失较大。 相似文献
4.
两种烟煤的液化及液化油的组成特征研究 总被引:11,自引:4,他引:11
在400℃、30min,7MPa冷氢压条件下两种煤液化结构表明,兖州煤比DECS-6(美国煤)煤更容易液化或共液化,这可能与兖州煤硫含量比较高有关,但DECS-6煤的油收率要高于兖州煤,表明EDCS-6煤容易裂解生成小分子化合物,同时种煤液化油的沸点分布特征基本一致。UV(紫外光谱)特征表明,液化油中单环芳烃主要为烷基取代苯类化合物,二环芳烃组分主要是烷基取代萘类化合物,三环芳烃主要为涉位缩合的菲类化合物,四环芳烃主要为芘、化合物,五环芳烃以苯并芘类化合物为主,而极性化合物可归属为含O、S、N的极性芳香化合物。 相似文献
5.
6.
用17mL微型盐浴共振搅拌反应釜研究了煤高温快速液化。结果表明,煤阶低且含矿物质少的烟煤液化性能较好;转化率主要受溶剂供氢性能的影响;氢气所做贡献很小,与氮气气氛下的转化率基本一样;催化剂作用不明显;煤的粒径对转化率影响不大,反应器振动影响较大。综合结论分析其机理为,在煤的一次热分解温度范围的高温段,一般在500℃附近,低变质程度烟煤结构中的桥键可充分断裂,形成大量自由基,用足量优秀供氢溶剂作氢源,可有效稳定自由基,形成液体产物,在几十秒钟到几分钟的时间内就达到很高的转化率。 相似文献
7.
高温高压下煤液化油气液平衡体系的研究 总被引:1,自引:0,他引:1
煤液化过程中,反应单元和分离单元是整个液化体系的核心部分,反应器和分离器中各组分在气、液相中的平衡组成确定不仅决定设备的尺寸设计,而且对液化过程中供氢溶剂的选择和反应条件的优化起到关键作用。但由于煤液化油在高温高压下的气、液平衡数据不足,使得反应器内的组成分布无法预测,相关的反应器设计过程仅能凭经验进行。为得到反应条件下的气液平衡数据,研究引入流程模拟软件Aspen Plus,将煤液化油蒸馏得到的窄馏分段与各种气体组分(如H2、C2H6等)共同建立了煤液化油闪蒸过程,得到了高温高压下煤液化油气液平衡体系。利用闪蒸体系计算得到在给定温度、压力情况下,各组分在高温、低温分离器内的气、液两相分布情况,通过改变高温分离器的温度和压力,分析了高温分离器内相平衡常数随温度(623.15K~723.15K)、压力(10MPa~21MPa)变化的规律。为进一步归纳适用于煤液化油的气液平衡方程,以高温分离器数据为基础,对推导建立的高压下烃类相平衡方程中的参数进行回归,得到高温高压下,适用于神华煤液化油并具有物理意义的二元(T,p)气液相平衡常数方程。 相似文献
8.
9.
吸附法脱除烷基化用汽油中的碱性氮化物 总被引:2,自引:0,他引:2
考察了磺酸树脂NKC-9、CT-175、D005-Ⅱ和LSI-600以及13X分子筛对催化裂化汽油(FCC 汽油)中碱性氮化物的脱除能力,以及对汽油中的烯烃和噻吩类硫化物的吸附影响.结果表明,以LSI-600为吸附剂时,对FCC汽油中碱性氮化物的吸附选择性最佳.在室温25℃左右、常压,剂油质量比1:35,碱性氮的脱除率达到100%所需要的吸附时间为15min,经溶剂再生,可重复使用.对这5种吸附剂,增大孔径和比表面积均有利于碱性氮化物的吸附,但当孔径足够大时,孔径和比表面积对碱性氮吸附的影响程度减弱. 相似文献
10.
用热重分析法研究煤液化油的催化加氢 总被引:1,自引:1,他引:1
本文用热重分析方法研究了煤液化油的催化加氢,系统地考察了热重分析的各种操作条件对煤液化油以及它与固体催化剂的混合样品的热重分析结果的影响,并建立了一套条件实验步骤。实验结果表明,当催化剂存在于样品中时,与不含催化剂时相比,煤液化油的失重在低于300℃时增大,而在大于300℃时减小;用H2作为载气时煤液化油的失重比用N2作为载气时大;催化剂的催化加氢性能与煤液化油的失重之间存在着定性的关联;催化加氢活性最高的催化剂表现出最大煤液化油失重。 相似文献
11.
使用碱洗提酚法提取煤液化油中的酚类化合物,然后结合Deans Switch装置和LTM色谱柱模块,采用中心切割气相色谱(GC)-质谱(MS)法对提取的酚类化合物进行定性。采用GC建立标准曲线,对煤液化油中主要酚类化合物的质量分数进行测定,并测定了煤液化油中邻甲基苯酚、2-乙基苯酚、4-丙基苯酚和5-茚酚4种酚类化合物的加标回收率。结果表明,在煤液化油中共定性出51种酚类化合物,测定了其中的35种酚类化合物的质量分数,其量占煤液化油总量的2.54(wt)%,苯酚和烷基苯酚占35种酚类化合物的88.2(wt)%。煤液化油中4种酚类化合物的加标回收率高,重复性好。 相似文献
12.
13.
煤烟气中痕量有机物的分析及去除 总被引:1,自引:0,他引:1
采用不同吸附剂对煤烟气中的痕量有机物进行了富集,比较了各种吸附剂的富集能力,对富集的样品用索氏提取及超临界流体萃取装置进行了萃取,用GC-MS-DS联用方法作了定性鉴定,指出超临界萃取技术在提取煤烟气中痕量有机物方面的优势。探讨了用催化转化法去除煤烟气中有机污染物的可能性。 相似文献
14.
15.
催化柴油中氮化物分布的气相色谱-原子发射光谱分析方法的研究 总被引:3,自引:1,他引:3
建立了催化柴油馏分中各种氮化物类型分布的气相色谱-原子发射光谱(GC-AED)分析方法,考察了色谱条件和不同的试剂气压力对各种氮化物分离和检测灵敏度的影响,定性(或归类)了某典型催化柴油中的73个氮化物,计算了程升条件下各种氮化物的保留指数,为不同实验室的定性比较提供了依据。以峰面积对质量浓度作图,氮化物在2.0~600 mg/L浓度范围内,AED检测器对不同氮化物有良好的线性响应,线性相关系数达0.998。几种氮化物(吲哚、1-甲基吲哚、C2-吲哚、咔唑、1-甲基咔唑、1,8-二甲基咔唑)峰面积的相对标 相似文献
16.
HPLC测定煤焦油中极性化合物的研究 总被引:7,自引:0,他引:7
应用高效液相色谱以正相-HPLC配以反冲(BF)技术,测定了煤焦油中极性化合物的总量。以反相(RF)-HPLC辅以制备液体色谱研究了极性段份的制备及典型极性化合物的分析,文中分析的实样由山西省一些焦化厂提供。 相似文献
17.
以丙酮、 异丙醇和苯为溶剂在超临界状态下对煤直接液化残渣进行萃取, 应用溶度参数分析了超临界萃取环境中溶剂和萃取原料的变化; 基于Hansen拓展方法建立了关联Hansen溶度参数和萃取收率的理论方程. 结果表明, 临界温度较高. 以色散力溶度参数为主的苯的萃取收率明显高于其它2种溶剂; 液化残渣中可萃出组分的理想溶解度随温度的升高而增大, 该效应也是超临界溶剂萃取重质组分时萃取收率提高的重要原因; 萃取收率与Hansen溶度参数之间的回归模型与实验结果具有较好的一致性, 证明Hansen溶度参数理论和Hansen拓展方法适用于描述煤直接液化残渣的超临界萃取过程. 相似文献
18.
19.
利用溶剂萃取和柱色谱等技术浓缩分离新疆宝明页岩油柴油馏分中的碱性氮化物。以宝明页岩柴油为原料,经糠醛溶剂精制,初步得到富集碱性氮化物的抽出油。以抽出油为深度富集碱性氮化物的原料,采用柱色谱等分离方法,从抽出油中分离得到碱性氮化物。利用傅立叶变换红外光谱仪(FT-IR)和气相色谱-质谱联用仪(GC-MS)分别对富集的碱性氮化物进行官能团检测和定性、定量分析。结果表明:新疆宝明页岩油柴油馏分中的碱性氮化物经溶剂精制和柱色谱等分离方法梯度富集后,碱性氮化物的质量分数由抽出油的12.08%提高到最终产物的69.48%,并在富集分离的产物中鉴定出60种碱性氮化物,其中主要为苯胺类、喹啉类和吡啶类化合物,各占25.85%,23.56%和16.52%。 相似文献
20.
离子液体液-液萃取-高效液相色谱测定水中酚类化合物 总被引:15,自引:0,他引:15
建立了离子液体1-丁基-3-甲基咪唑六氟磷酸盐([C4mim][PF6])液-液萃取-高效液相色谱测定水中酚类化合物的方法.研究了水相pH值、萃取时间、水相体积及盐的浓度对萃取的影响.最佳萃取条件分别为:水相pH值为5,萃取时间为40 min,水相体积为60 mL.对比了离子液体对1-辛醇对苯酚、4-硝基苯酚、2-硝基苯酚、2,4-二甲基苯酚和双酚A的富集效率.在最佳条件下,离子液体对5种酚的富集倍率在9~151之间,方法对苯酚、4-硝基苯酚、2-硝基苯酚、2,4-二甲基苯酚和双酚A的检出限分别为:2.0、0.9、0.3、1.8和1.1 μg/L.将该方法应用于自来水、河水、湖水和污水的检测,回收率为87.9%~109.9%. 相似文献