首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a method for the simultaneous determination of As(III), Sb(III) and Se(IV) by combining hydride generation and gas phase molecular absorption spectrometry. A system for continuous hydride generation has been designed and developed, based on the use of a double process of gas-liquid separation, and optimal compromise operation conditions for the three compounds have been found. After generation, the hydrides are collected in a liquid nitrogen cryogenic trap, and then evaporated and driven to the flow cell of a diode array spectrophotometer, in which the transient signals over the 190–250 nm wavelength interval are measured. Under the recommended conditions (sample flow: 35 ml min−1, 0.5 M HCl; reductor flow: 4 ml min−1 of 4% NaBH4, solution) linear response ranges above 50 μg 1−1 for As(III), 30 μg 1−1 for Sb(III) and 200 μg 1−1 for Se(IV) are obtained with detection limits of 22 μg 1−1, 15 μg 1−1 and 65 μg 1−1, respectively. Multiwavelength linear regression equations were used for the simultaneous determination of the three elements in different synthetic samples, with good precision and accuracy and to study simultaneously the interference from different chemical species for the three compounds. Results were similar to those obtained by other techniques using hydride generation.  相似文献   

2.
Arsenic (0.1–5 μg), antimony (1–40 μg), tin (0.5–10 μg) and germanium (0.2–10 μg) are determined simultaneously by reduction to their hydrides with sodium tetrahydroborate(III), followed by gas chromatographic separation on a column of 10% E-301 silicone gum rubber on Porapak Q, and measurement of the emissions at 490 nm in an oxygen/hydrogen flame within a cavity. Detection limits for 1-ml samples are 35 ng As, 400 ng Sb, 85 ng Sn and 100 ng Ge. A more sensitive determination of arsenic (0.05–3 μg) and antimony (0.1–5 μg) in binary mixtures is also described; the detection limits are 15 ng As and 40 ng Sb.  相似文献   

3.
Ornemark U  Pettersson J  Olin A 《Talanta》1992,39(9):1089-1096
A cold trap system for the determination of selenium by hydride generation-atomic absorption spectrometry (HG-AAS) is described. For a 30-ml sample the limit of detection is <2 ng/l. and the precision is better than 4% at the 30 ng/l. level. A number of digestion procedures for the destruction of organic matter prior to the determination of total dissolved selenium in water has been tested and compared. Concordant results were obtained except for oxidation by peroxodisulphate in strongly acidic solutions with a high content of organic material. The selenium concentrations found were in agreement with those obtained by HG-AAS after preconcentration by evaporation and dry ashing with the magnesium nitrate-nitric acid-hydrochloric acid method.  相似文献   

4.
Summary A detailed study of interfering processes in the determination of As, Sb and Se using a twin-channel hydride generation flow-system is presented. The influence of As, Sb, Se and Sn on all three studied elements has a similar character and occurs in the gas phase only. In the presence of bismuth and tellurium interferences occur also in the liquid phase. It was found that arsenic and antimony may influence the analytical signals of elements with analytical lines in the range from 190 to 235 nm by non-specific absorption due to molecular band spectra.Dedicated to Professor Dr. Wilhelm Fresenius on the occasion of his 80th birthday  相似文献   

5.
A modified technique with a simple T-tube for atomisation held above conventional atomic absorption burners is described. The absolute sensitivities are in the range 0.3–11 ng and the r.s.d. is usually below 5%. It is confirmed that prior oxidation of lead markedly increases the sensitivity.  相似文献   

6.
Studies of the decomposition rate of the reducing agent sodium tetrahydroborate in alkaline and acidic media and of the reaction rate of the formation of the hydrides under the usual analytical conditions are described. The stripping of the hydrides with different lengths of the stripping coil, with different amounts of hydrogen in the carrier gas and with sodium hydroxide added during and after the stripping process are discussed. Some evidence for the existence of an intermediate during the decomposition reaction of the sodium tetrahydroborate is given. The role of temperature, hydrogen and oxygen during the atomization of the hydrides in an electrically heated quartz cuvette is discussed. Under certain conditions, antimony atoms form dimers or elemental antimony precipitates in the heated cuvette.  相似文献   

7.
The study was performed to compare the effect of magnesium modifier (magnesium nitrate) with that of other modifiers (palladium nitrate and nickel nitrate) in determination of arsenic, antimony and selenium by atomic absorption spectroscopy with atomization in a graphite tube, with generation of hydrides and in situ preconcentration in a graphite tube. The assumed criterion of a modifier performance was the magnitude of the analytical signal. It was found that in determinations with atomization in a graphite furnace the effects of all these modifiers were comparable, while in those with hydride generation and in situ preconcentration in a graphite tube the magnesium modifier showed poorer performance (25% decrease of the analytical signal). In determinations of arsenic and selenium the analytical signal obtained with magnesium salt as a modifier was comparable with those obtained in the presence of all other modifiers.  相似文献   

8.
Li ZX  Guo YA 《Talanta》2005,65(5):1318-1325
A new and sample technique for the simultaneous determination of trace arsenic, antimony, bismuth and selenium in biologic samples by hydride generation-four-channel nondispersive atomic fluorescence spectrometry was development. The conditions of instrumentation and hydride generation of arsenic, antimony, bismuth and selenium were optimized. For reducing hexavalent Se to the tetravalent state was to heat the sample with 6 mol l−1 HCl, and then pre-reducing pentavalent As and Sb to the trivalent state was achieved by the addition of 0.05 mol l−1 thiourea. The interferences of coexisting ions were evaluated. Under optimal conditions, the detection limits for As, Sb, Bi and Se were determined to be 0.03, 0.04, 0.04 and 0.03 ng ml−1, respectively. The precision for seven replicate determinations at the 5 ng ml−1 of As, Sb, Bi and Se were 0.9, 1.2, 1.3 and 1.5% (R.S.D.), respectively. The proposed method was successfully applied to the simultaneous determination of As, Sb, Bi and Se in a series of Chinese certified biological reference materials using simple aqueous standard calibration technique, the results obtained are in good agreement with the certified values.  相似文献   

9.
This study describes the determination of ternary mixtures of dimethyltin chloride (DMT), trimethyltin chloride (TMT) and monobutyltin chloride (BT) by hydride generation-gas phase molecular absorption spectrometry and the application of different chemometric methods: principal components regression (PCR) and partial least squares (PLS). The two methods are applied to the absorption spectra of mixtures of DMT, TMT and BT. Two different experimental designs are tested for the mixtures, a triangular design and a central composite design. The models obtained from the triangular design offer the best prediction results. The effects of the number of working wavelengths and the number of factors included in the calibration model is studied and a different behaviour is seen for each compound and calibration model. The methods are applied to the analysis of artificial aqueous samples containing different concentrations of DMT, TMT and BT species. No significant differences are observed between the calibration models investigated.  相似文献   

10.
This article deals with the electrocatalytic and electrochemical mechanisms of hydride formation and their dependence on hydrogen overvoltage. A three-electrode-arrangement was used to determine the hydrogen overvoltage of different cathode materials (Pt, Au, Ag, glassy carbon, Cd, Pb, amalgamated Ag). The applicability of these cathode materials was tested for hydride formation using As(III), As(V), Sb(III), Sb(V), Se(IV), and Sn(IV). Glassy carbon is the most suitable cathode material for hydride generation with As(III), Sb(III), Se(IV), and Sn(IV). Hg-Ag is well suited for the production of stibine and arsine. As(III), As(V), Sb(III), and Sb(V) were all converted into their hydrides with efficiencies > 90%. A detection limit in the range of 0.11-0.13 microg L(-1) for As and Sb (sample volume 200 microL) was obtained for cathode materials with a high hydrogen overvoltage. The precision of replicate measurements was better than 5% calculated as variation coefficient. The accuracy of the presented method was verified by analysis of certified reference materials and tissues of cancer patients. The recovery rates for As and Se were calculated to be 93-108%.  相似文献   

11.
Sanz J  Pérez M  Martínez MT  Plaza M 《Talanta》1999,50(1):149-164
A hydride generation gas phase molecular absorption spectrometry (HG-GPMAS) method for the determination of butyltin compound is optimized by experimental design. This method is based on the conversion of the butyltin chloride into gaseous monobutyltin hydride by adding a sodium tetrahydroborate (III) solution. The hydride generated is collected in a liquid nitrogen cryogenic trap. This is revolatilized, driven to the quartz flow cell and measured with GPMAS with diode array detection. A Plackett-Burmann design is used for the study of the factors that influence the absorption signal. The optimization of the parameters affecting the production and collection of the monobutyltin hydride is achieved using a central composite design. Partial least square (PLS), multiple linear regression (MLR) and univariate calibration are applied to the spectra obtained. The quality parameters (detection limits and precision) for the butyltin chloride are reported. An interference study is made.  相似文献   

12.
A method has been developed for the determination of arsenic and antimony at sub-ppb level using hydride preconcentration inside the graphite furnace. The influence of the quality of the graphite surface, of its modification with palladium coating and of the ways of introducing hydride into the furnace on the analytical signal is discussed. After optimization of system parameters, detection limits of 25 and 36 pg were obtained for arsenic and antimony. Characteristic masses (for arsenic and antimony, respectively) were 31 and 33 pg/0.0044 A·s for direct injection GFAAS and 69 and 57 pg/0.0044 A·s for hydride in situ preconcentration and atomization in the palladium coated graphite tube. Therefore the overall efficiency of the hydride generation and trapping was estimated to be 45 and 58% for arsenic and antimony, respectively.  相似文献   

13.
Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 μg L−1, respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.  相似文献   

14.
Sanz J  Pérez M  Martínez MT  Plaza M 《Talanta》2000,51(5):849-862
A factorial design is applied to the optimization of the determination of dimethyltin chloride by hydride generation gas phase molecular absorption spectrometry (HG-GPMAS). A method is described for the determination of dimethyltin chloride after conversion into gaseous dimethyltin hydride by adding a sodium tetrahydroborate (III) solution. The hydride generated is collected in a liquid nitrogen cryogenic trap. This is revolatilized, driven to the quartz flow cell and measured with gas phase molecular absorption spectrometry (GPMAS) with diode array detection. A Plackett-Burmann design is used for the study of the factors that influence the absorption signal. The optimization of these factors is performed using a central composite design. The spectra obtained over a wide range of wavelengths, 190-220 nm, allow the multivariate calibration to be studied. The parameters affecting the production and collection of the dimethyltin hydride are studied. The detection limit obtained is 3.2 ng ml(-1). The precision (RSD=4.1%) is calculated from a solution containing ten times the corresponding detection limit. The recoveries (99-108%) are satisfactory. A study is made of the influence of several interferent ions (hydride generators, transition metals and anions) in the presence of dimethyltin chloride.  相似文献   

15.
16.
The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3σ limit of detection was estimated as 0.053 μg l− 1 for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat # CRM-TMDW and Metals on Soil/Sediment #4, IRM-008.  相似文献   

17.
Summary Arsenic, selenium and antimony were determined using on-line hydride generation in conjunction with a simultaneous medium power inductively coupled plasma (ICP) spectrometer with conventional pneumatic nebulization. The sample, acidified with 3 mol/l hydrochloric acid was mixed with 1% (m/v) sodium tetrahydroborate and 5% (m/v) potassium iodide, the mixed stream being pumped to the nebulizer of the ICP spectrometer. Calibration curves were linear up to 1 mg/l analyte, with detection limits of 2; 3 and 3 g/l for arsenic, antimony and selenium, respectively, for 10 s integration times and a sample uptake rate of 2.15 ml/min.  相似文献   

18.
19.
The interferences between arsenic and antimony on each other during the hydride generation atomic absorption spectrometry (HGAAS) determination of arsenic and antimony using a quartz tube atomizer (QTA) were examined. In order to eliminate or reduce such interferences by selective heat decomposition of arsine and stibine, a Pyrex adsorption U-tube trap containing glass wool was placed between the drying tube and the quartz tube atomizer. Although at 250 °C stibine decomposes and is held almost completely by the trap, arsine is also decomposed to an extent of 24% and, therefore, thermal decomposition is not useful to eliminate antimony interference on arsenic determination. The effect of coating the glass wool in the U-tube with antimony on the arsenic suppression of the antimony signal was studied. The results showed that the antimony coating in the U-tube could not hold arsenic effectively and its interference on the antimony signal could not be eliminated by this means. In the second part of the study, oxygen was supplied to the quartz tube atomizer during atomization in order to study the effect of supplying oxygen on the antimony signal and on the interference of arsenic in the antimony determination. Sensitivity was increased in the presence of oxygen and interferences of arsenic on antimony determination was decreased by about 10% when oxygen was supplied. It was also observed that the extent of interferences depended mainly on the interferent concentration rather than the analyte concentration.  相似文献   

20.
D'Ulivo A  Fuoco R  Papoff P 《Talanta》1985,32(2):103-109
A procedure is described for simultaneous determination of arsenic, selenium, tin and mercury in aqueous solution by non-dispersive atomic-fluorescence spectrometry. Radiofrequency-excited EDLs, 100% modulated in the kHz region, were used for atom excitation. Sodium tetrahydroborate was used as reductant and a hydrogen-argon miniflame as atomizer. In the optimized procedure, which uses 1 ml of sample, the limits of detection (three times the standard deviation of the blank) were 0.04, 0.08, 0.1 and 0.1 ng ml for arsenic, selenium, tin and mercury respectively. The linear dynamic range was greater than three decades for all analytes and the precision was better than 7% (typically 3%) for concentrations 1 ng ml . Results for mutual interference effects are reported. Copper, nickel, lead and cobalt interfered only with selenium (5 ng ml ), when present in at least 200-fold weight ratio to it. Using 5 ml of sample improved the limits of detection for selenium and arsenic (0.01 and 0.02 ng ml respectively), but at the expense of greater interference. Recovery from spiked natural water samples was better than 95% at the ng ml level, except for selenium in sea-water, when the recovery was only 85%. Determination of the four elements, including standard-addition and background measurements, requires about 10 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号