首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A flat sheet membrane desolvator (FSMD) was used to extend the applicability of a 120 W helium microwave induced plasma (He-MIP) to elemental analysis of organic-solvent-based samples and element selective liquid chromatographic detection. With the FSMD on-line, methanol could be nebulized with a sample flow rate of 1.5 ml/min and a carrier gas flow rate of 1.2 l/min without extinguishing the plasma. Under these conditions, applying desolvator countercurrent gas flows in the range 0–8 l/min restored of the original pink color of the pure helium MIP from the bluish-green caused by methanol. Significant reductions in the emission intensities of C2 species at 436.5, 473.7, 512.9, and 563.6 nm were observed with the application of the FSMD. The intensities of chlorine analyte emission lines at 479.5, 481.0 and 481.9 nm increased with increasing countercurrent gas flow rates and reached a maximum intensity with a flow rate of 5.0 l/min. Detection limits for Cl and Pb were 2.1 and 0.1 ppm using a 1 m focal length monochromator. Other elements and solvent combinations were also examined. Element selective liquid chromatographic detection was preliminarily examined by monitoring 2,6-dichlorobenzene and 5,7-dichlorohydroxyquinoline at the 479.5 nm Cl atomic emission line. Chlorine detection limits in the 3–7 μg range (70–190 ng/s) were obtained.  相似文献   

2.
This work concerns interference effects in a 0.7-kW, 50-MHz inductively coupled plasma (ICP) provided with an ultrasonic nebulizer (USN) and desolvation apparatus (DA). The observations were made under (ICP) conditions adopted previously as “compromise conditions for simultaneous multi-element analysis.” Various matrices and analytes were considered.An arrangement of two identical USN's with separate DA's was used to distinguish between interferences due to processes in the plasma (“plasma effects”) and the nebulizer—desolvation apparatus (“nebulizer—desolvation effects”). The latter were identified as “desolvation effects” and attributed to a variation in the loss of analyte in the DA. This desolvation effect, whose magnitude varies between ±10%, is related to the difference in volatility between matrix and analyte. The experiments revealed plasma effects that cannot be reconciled with the common pictures of ionization interference and are not due to incomplete volatilization or dissociation either. Possible explanations are considered. The overall interference level in the ICP studied is discussed and practical conclusions regarding the use of desolvation, “pure” aqueous solutions as standards, and spectroscopic buffers are drawn.  相似文献   

3.
A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5′ deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.  相似文献   

4.
A typical electrothermal vaporization (ETV) using a tantalum was built for low-pressure ICP-AES. The analytical performance of the ETV was tested and compared with that of a PFA pneumatic nebulizer with a double membrane desolvator (DMD). The limits of detection of the ETV were obtained in the range of 3.4 ng to 758 ng for Zn, Cu, Co, Fe, and Mg, while those of the PFA nebulizer were in the range of 53 ppb to 286 ppb. A relative standard deviation (RSD) of 4.3 - 8.5% for ETV was obtained, while 2.15 - 6.84% RSD was found for DMD.  相似文献   

5.
A multi-tube Nafion® membrane dryer used as a part of a desolvation system in conjunction with thermospray nebulization was optimized and characterized with inductively coupled plasma-atomic emission spectrometry (ICP-AES). Either argon or nitrogen could be used as the sweep gas, and optimum conditions were found to be at low temperature and low sweep gas flow rate. Analyte sensitivity was not significantly affected by placing the membrane between the plasma and the nebulizer, although about 20% of the analyte entering the dryer is lost within the dryer. A dual role of the membrane dryer was demonstrated. As a secondary step within the desolvation system, it enabled a high desolvation efficiency of 99.94% for aerosols from 1% (v/v) nitric acid. Plasma solvent load could be reduced to 0.9 mg min−1 with a tap water cooled condenser combined with the membrane dryer, compared to 21 mg min−1 with the normal chilled condenser desolvation system. Meanwhile, the membrane was also found to act as a pulse dampener, eliminating the plasma pulsation in the central channel caused by thermospray nebulization and thus improving the analytical performance of the system. The average relative standard deviations (RSD) with the optimized membrane/thermospray system were 0.83% and 0.60% for the background and analyte signals, respectively, which were reduced by a factor of 1.9 and 2.7 for the background and analyte signals, respectively, compared to thermospray without the membrane desolvation, and were essentially identical to those obtained with pneumatic nebulization sample introduction. The improvements in detection limits with the membrane/thermospray system were 1.2–3.0 times with an average factor of 1.8 compared to thermospray without the membrane dryer, and 18–68 times with an average factor of 39 compared to the standard pneumatic nebulization sample introduction system without a desolvation unit. The detection limits for Mn, Mg, Cr and Cd with the present thermospray/membrane system were comparable to those reported for pneumatic nebulization ICP mass spectrometry.  相似文献   

6.
A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1–4% vs. 3–8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser.  相似文献   

7.
The total desolvation rate of sample droplets in an argon inductively coupled plasma (Ar ICP) is investigated through the development of a two-phase continuum flow computer model. The desolvation model is supplemented by equations used to determine the trajectories of particles through the plasma. The model is used to calculate the behavior of aerosol droplets from a direct injection high efficiency nebulizer (DIHEN), a micronebulizer used to inject microliter quantities of samples that are toxic, expensive, or of limited volume. We use the combination of desolvation and transport models to present the first predicted spatial distribution of droplet concentrations and evaporation rates in an ICP flow. These data are compared with the behavior of a DIHEN spray in an environment with no net argon gas flow to determine the importance of gas flow rates to overall droplet concentration profiles in the ICP. In addition, two separate techniques (Stokes’ equation and the direct simulation Monte Carlo treatment) for determining droplet trajectories are contrasted.  相似文献   

8.
The effect of replacing the desolvation system (i.e., heater/condenser (HC) and membrane desolvator (MD)) of an ultrasonic nebulizer (USN) system with a pre-evaporation tube (PET) that is heated to about 400 °C on the analytical capabilities of inductively coupled plasma optical emission spectrometry (ICP–OES) was investigated. A multivariate optimisation was conducted in each case to find operating conditions maximizing plasma robustness. Under optimum conditions, the analytical performance of ICP–OES was significantly improved (i.e., better sensitivity, detection limit and plasma robustness) with USN–PET compared to that achieved with both the commercially-available USN–HC–MD and a conventional pneumatic nebulizer/spray chamber sample introduction system. However, only the USN–PET approach allows the determination of Hg, which appears to otherwise be lost in the heater/condenser system. Using a simple external calibration, without any matrix matching, and using an argon emission line for internal standardization, the results obtained for the determination of trace elements in certified soil reference materials (SRM 2710 and 2711) by USN–PET were in good agreement with certified values. This is unlike with conventional sample introduction systems where internal standardization using an Ar line is unusual, as it does not compensate for physical interferences, and either internal standardization (with internal standards added to the sample and standard solutions) or matrix-matched calibration is required.  相似文献   

9.
There is demonstrated interest in combining capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) for speciation determinations. When self-aspirating nebulizers are used for this application, it is important to offset the suction effect to avoid degradation of the separation. In this study, sample uptake rates for three microconcentric nebulizers of the same model, in combination with a cyclonic spray chamber, were characterized and compared for future utilization in CE–ICP-MS interfaces. The specific model studied was a MicroMist with a nominal uptake rate of 100 μl/min at 1 l/min argon gas flow rate per the manufacturer's specifications. Sample uptake rates at various nebulizer gas flows were measured by aspirating water from a weighed container and calculating the uptake rate in microliter per minute. The nebulizers studied provided good reproducibility from day to day, but a comparison of the different nebulizers reflected a significant difference in performance. A characteristic observed during the study was that uptake rates decreased with increasing nebulizer gas flow. This can be used for sample introduction for CE–ICP-MS. Interestingly, very different performance was observed when comparing the three different nebulizers of the same model. Uptake rates showed strong dependence on argon gas flow rates and the dimensions of the sample uptake tubing.  相似文献   

10.
HPLC-ICP-MS或HPLC-FAAS法分离测定硒化合物(英文)   总被引:5,自引:0,他引:5  
李方实 《色谱》1999,17(3):240-244
 提出了一种用高效液相色谱(HPLC)分离和用电感偶合等离子体质谱仪(ICP-MS)或火焰原子吸收光谱仪(FAAS)作元素专一检测器在线测定硒的化学形态的方法。在优化的HPLC条件下,用ESAⅢ阴离子色谱柱(250mm×4.6mm),以柠檬酸铵为流动相(5.5mmol/L,pH5.5,流速1.5mL/min),进样量100μL,分离和测定三甲基硒离子、硒代蛋氨酸、亚硒酸和硒酸盐只需8min。HPLC-FAAS在线分析4种硒化合物的检测限为p(Se)=1mg/L。  相似文献   

11.
Under the conditions of low radio frequency (rf) power of 600 W and aerosol gas flow rate of 1.25–1.35 l/min, 56Fe (or 54Fe) ions can be detected from the isobaric interference of the ArO+ (or ArN+) matrix. Using this method, the detection limit of 56Fe can reach 16 ng/l (ppt), 60 times smaller than by normal plasma conditions at 1200 W rf power. The linear dynamic range of the analyte measurement extends to 1000 ng/ml (ppb).  相似文献   

12.
Three different analytical strategies have been evaluated for the quantification of Ir in geological samples. Glassy rock samples from K?fels and reference material WGB-1 were analyzed directly by inductively coupled plasma sector field mass spectrometry (ICP-SFMS) at mass resolution 400 using membrane desolvation and at mass resolution 9500 without membrane desolvation. Matrix separation by anion-exchange pre-concentration was also investigated. The ultrasonic nebulizer USN6000AT+ (Cetac Technologies, Omaha, NE, USA) incorporating a membrane desolvation unit was used as the sample-introduction system. Sample preparation involved complete microwave-assisted acid digestion of the silicate matrix with HNO3-HCl-HF. The results obtained by the three methods of quantification were in good agreement, showing that oxide-type interferences were effectively eliminated solely by membrane desolvation. The limits of detection were 6 pg g for low resolution measurement with use of the membrane, 15 pg g(-1) at a mass resolution of 9500, and 59 pg g(-1) for the ion-exchange procedure. The ultimate precision obtained for the K?felsit Ir data was, however, compromised by the small sample intake (0.3 g), because of the inhomogeneous distribution of Ir in geological samples.  相似文献   

13.
A flow injection (FI) method was developed using hydraulic high-pressure nebulization as a sample introduction system, coupled to inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) for rapid and simultaneous determination of 19 elements. The operating conditions of the system (analyte flow rate, heating and cooling temperatures of the desolvation module, carrier gas flow rate) for the simultaneous determination of 19 analytes were optimised. The optimum parameters of the sample introduction system were found to be 1.4 ml min−1 and 1.35 l min−1 for the analyte solution and nebulizer flow rates, respectively. A compromised condition for heating and cooling stage temperatures of 170 and −5 °C was chosen. The detection limits were compared to those obtained by using ICP-TOFMS with alternative sample introduction techniques e.g. conventional nebulization, flow injection chemical hydride generation (FI-CHG) and the obtained results were comparable or better than those resulting from alternative sample introduction. Applying the optimised conditions the simultaneous determination of Ag, As, Ba, Cd, Co, Cu, Ga, In, Li, Mn, Mo, Pb, Sb, Se, Sn, Sr, Tl, V and Zn was carried out. Absolute detection limits (3σ) in the range of 2-750 pg and precision between 0.5 and 9.6% from five replicate measurements of 10 ng ml−1 multielemental sample solutions were achieved by using a 200 μl sample loop. The developed method was applied for the analysis of certified reference materials of biological origin (TORT-2 “Lobster Hepatopancrease”, BCR-422 “Cod Muscle” and IAEA MA-B-3/TM “Fish Homogenate”), and the results showed good agreement with the certified values.  相似文献   

14.
An implementation of the Dionex IonPac AS12A analytical column with an element-specific ICP-MS detection is described for the simultaneous determination of halogen and oxyhalogen anions, sulfate, phosphate, selenite, selenate and arsenate. The chromatographic separation was achieved in less than 4 min with an aqueous 11 mM (NH4)2CO3 (pH 11.2, adjusted with aqueous ammonia) as eluent. Special emphasis was given to optimize the ICP-MS detection conditions for the reliable detection (RSD<5%) of bromate and bromide at a bromine concentration level of 1.0 microg l(-1) with 50 microl sample injection volume. In order to achieve the highest detector response for bromine species an ultrasonic nebulizer equipped with a membrane desolvator had to be employed. The detection limits (S/N=3, sample injection volume 50 microl) obtained with the IC-ICP-MS after the optimization were 0.67 microg l(-1) for BrO3-, 0.47 microg l(-1) for Br-, 69 microg l(-1) for ClO2-, 4 microg l(-1) for Cl-, 47 microg l(-1) for ClO3-, 13 microg l(-1) for SO4(2-), 36 microg l(-1) for PO4(3-), 0.4 microg l(-1) for SeO3(2-), 0.3 microg l(-1) for SeO4(2-), and 0.4 microg l(-1) for AsO4(3-).  相似文献   

15.
The motivation of this work was to study some of the properties of nanoelectrospray operation under conditions where the entire sprayed liquid is vaporized and inhaled into the vacuum system. Under these conditions the desolvation requirements, sampling efficiency, concentration versus mass sensitivity, and molar response characteristics of various compounds were studied. The combined efficiency of ion production from solution and transfer into the vacuum system, referred to as sampling efficiency, is presented under various inlet conditions including different flow rates, solution compositions, and compound types. Under ideal solvent conditions the results for favorable compounds show sampling efficiencies of 70-85% at flows in the range of 50-500 nL/min. Efficiencies were lower for aqueous samples and compounds of different structures gave different molar response factors under these high sampling efficiency conditions. The relative molar response factors are presented in terms of those observed with higher flow rate sources which operate at significantly lower sampling efficiencies. In all cases, operating in this flow regime, the ion count rate was directly proportional to the absolute mass of analyte molecules entering the source. The experimental source used to carry out these studies included gas nebulization to stabilize the electrospray process, a heated laminar flow chamber to enhance desolvation and ion production, and various atmosphere-to-vacuum aperture diameters to maximize ion transfer.  相似文献   

16.
A flow injection sample digestion system has been developed comprising an indirectly electrically heated Pt/Ir capillary. Such a capillary allows reaction temperatures of up to 360 degrees C and pressures of up to 30 MPa (300 bar) and withstands concentrated acids. This temperature is 130 degrees C to 160 degrees C higher compared to the operating temperatures of microwave heated flow systems. A combination of an ultrasonic nebulizer and membrane desolvator serves as an interface between the flow digestion system and an ICP/AES spectrometer. The membrane desolvator removes interfering gaseous digestion products so effectively before the sample stream enters the plasma that the measured residual carbon concentration falls in the region of the detection limit of ICP/OES measurements. Sewage sludge samples were digested using nitric acid and the elemental traces online determined. The detection limits related to the original dry substances amount to the lower microg/g range.  相似文献   

17.
This work shows the feasibility of using nebulization for introduction of aqueous samples into the tubular-torch capacitatively-coupled microwave plasma (CMP). Previously, solid electrodes were used with this type of plasma, in which analyte carrier and plasma support gases are premixed and swept around the electrode tip. With the new design, the analyte carrier gas passes through the centre of the hollow tubular electrode and mixes with the plasma support gas at the tip of the electrode where the plasma is formed. Sample solutions are nebulized with a Meinhard nebulizer and a laboratory-constructed spray chamber and desolvation system. The tubular torch is made of tantalum. Plasma gases investigated include argon, helium and nitrogen. Typical operating powers are 300-350 W. Elements studied include Ag, Al, Ba, Ca, Cd, Cr, Cs, Cu, K, Li, Na, Pb, Pd, Sr and Zn.  相似文献   

18.
An automated continuous monitoring system for the determination of total as well as inorganic mercury by cold-vapor atomic absorption spectrometry is described. The method uses continuous flow digestion, reduction and extraction in small bore tubes at slow flow rates, and is suitable for use in the analysis of wastewater and natural waters. A detection limit of 0.1 ppb is obtained when a specially designed, complete gas—liquid separator is used with a condenser circulated with ice-chilled water for removing water vapor, and an 8-μl flow cell for detection. The response times for the determination of inorganic and total mercury are about 3 and 5 min, respectively. The amount of reagents required is about one-tenth of that in conventional Auto-Analyzer methods.  相似文献   

19.
It is considered that variations in analyte emission intensities in an inductivity coupled plasma system may be correlatable to variations in the pressure in the nebulizer spray chamber. Preliminary to a study of such correlations the basic effects of the three gas flow rates and the rf power on nebulizer spray chamber pressure have been measured. The results are reported.  相似文献   

20.
This paper demonstrates improved nanoflow LC-MS performance on a QqTOF instrument with the incorporation of a heated nanoflow interface (particle discriminator) and a nebulizer assisted sprayer. It is shown that the nebulizer broadens the usable range of electrospray potentials, simplifying the tuning procedure, particularly for negative mode nanoflow gradients. The improved desolvation capability with the particle discriminator results in signal/noise improvements of approximately 3.5x for negative ion mode samples prepared in predominantly acidified water as well as increased ion current stability. For nanoLC applications, the combined desolvation capabilities of a counter-current gas and heated laminar flow chamber provide reduced background, increased signal stability, reduced background drift, and improved protein sequence coverage when compared with data generated with only a counter-current gas for desolvation. This system is capable of subfemtomole nanoflow LC-MS sensitivity in both positive and negative ion mode across the solvent gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号