首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of complex formation equilibria of some β-amino-alcohols with lead(II) and cadmium(II) ions at 25°C and in 0.5 M KNO3 is reported. The amino-alcohols considered are 2-amino-1-propanol, 2-amino-1-butanol, 2-amino-1-pentanol and 2-amino-1,3-propanediol. sec-Buthylamine and 2-amino-1-methoxy-propane have been also considered for comparison. The results are discussed in terms of ligand structure, paying attention to the number of hydroxyl groups and to the length of the alkyl residual. A weak contribution of the alcoholic oxygen in the coordination of cadmium(II) and the presence of a mixed hydroxyl species in lead(II) containing systems are hypothesized.  相似文献   

2.
The synthesis and characterization of zinc(II), cadmium(II), lead(II), mercury(II) and phenylmercury(II) complexes of 4-amino-6-hydroxy-2-mercapto pyrimidine (AHMP) are reported. The stoichiometry of the complexes was found to be 1:2 except for the phenylmercury(II) complex where the ratio is 1:1. Characterization of these complexes was carried out by means of elemental analyses, IR and 1H NMR measurements. In these complexes the ligand is bonded to the metal through its sulfur atom. The potentiometric results showed the formation of 1:1 and 1:2 complexes and the corresponding stability constants were determined for both Zn(II) and Cd(II) ions. The high insolubility of mercury(II), phenylmercury(II) and lead(II) complexes prevented the determination of their stability constants. The concentration distribution of the complexes in solution was evaluated. The effect of temperature on the dissociation constant of AHMP and the formation constants of both the Zn-AHMP and Cd-AHMP complexes were studied and the thermodynamic parameters were calculated.  相似文献   

3.
Reduction of the complexes of cadmium(II) and lead(II) atdme in aqueous and aqueous-methanol media at μ = 1.0 M(NaClO4) at 15 ±0.1 and 25 ±0.1°C is reversible and diffusion-controlled. Four complex species are formed in either case. The overall stability constants of 1:1,1:2, 1:3 and 1:4 complexes have been determined. Lead(II) complexes are much stronger than the corresponding cadmium(II) complexes.  相似文献   

4.
In order to understand the essential processes/interactions between the metal ions and modified electrodes which are based on complexing polymeric films, access to thermodynamic characteristics is compulsory. The paper enlarges the information concerning the sorption of metal ions within complexing polymer films, particularly based on azulene, which can be involved in metal detection sensors. Interactions between lead(II) or cadmium(II) ions and complexing polymer films have been studied using chemical preconcentration–anodic stripping method. The films have been obtained by controlled potential electrolysis in millimolar solutions of 4-azulen-1-yl-2,6-bis(2-thienyl)pyridine (L) in acetonitrile. PolyL films affinities towards these metal ions have been quantified at different temperatures by means of sorption isotherms. Parameters for sorption of lead(II) and cadmium(II) ions within polyL films have been calculated for Freundlich, Langmuir and Redlich–Peterson isotherms. The best fit was obtained when using Langmuir isotherm. The results evidence that lead ions are better sorbed than cadmium within polyL film. Thermodynamic parameters for the chemical sorption of lead(II) and cadmium(II) ions within polyL films have been calculated.  相似文献   

5.
The electrical conductances and heats of phase changes in lead(II), zinc(II) and cadmium(II) 10-hydroxyoctadecanoates are measured. The soaps are prepared by metathesis in alcohol solution from 10-hydroxyoctadecanoic acid which in turn is prepared from the oxidation of cis-9-octadecenoic (oleic) acid with concentrated sulphuric acid.The Arrhenius plot for lead(II) 10-hydroxyoctadecanoate shows a maximum, a behaviour that had earlier been interpreted to be due to complex formation. A similar plot for zinc(II) 10-hydroxyoctadecanoate is linear while that for cadmium(II) 10-hydroxyoctadecanoate presents a discontinuity which is interpreted, with the aid of the differential scanning calorimetric (DSC) spectra and optical examination, to be suggestive of the formation of an intermediate phase between the solid and the liquid phases. The low conductances of the soaps in comparison with the literature data on some metal caboxylates indicate the existence of extensive intermolecular hydrogen bonding in the molten phase. Both lead(II) and zinc(II) 10-hydroxyoctadecanoates melt directly from the solid to the liquid phase while their cadmium(II) counterpart passes through the gel-like phase before melting into the liquid. The mesophase of cadmium(II) 10-hydroxyoctadecanoate is transformed to the liquid phase with a relatively low enthalpy change and the behaviour is associated with the cylindrical micekkar structures of the liquid phase that have their formative stage from the gel-like mesophase.  相似文献   

6.
The bismuth‐coated electrode is known to be prone to errors caused by copper(II). This study investigates copper(II) interference at bismuth film electrode for the detection of lead(II) and cadmium(II). It was conducted using glassy carbon electrode, while the bismuth film was plated in situ simultaneously with the target metal ions at ? 1200 mV. Copper(II) presented in solution significantly reduced the sensitivity of the electrode, for example there was an approximately 70 % and 90 % decrease in peak signals for lead(II) and cadmium(II), respectively, at a 10‐fold molar excess of copper(II). The decrease in sensitivity was ascribed to the competition between copper and bismuth or the metal ions for surface active sites. Scanning electron microscopy (SEM) and energy dispersive X‐ray (EDX) analysis suggested a large decrease in the amount of bismuth nanoparticles formed on the electrode surface in the presence of copper(II) occurred, validating the competition between copper and bismuth ions for surface active sites. Recovery of the stripping signal of lead(II) and cadmium(II) was obtained by adding ferrocyanide ion to the solution. Finally, the proposed method was successfully applied to determine lead(II) and cadmium(II) in water samples and the method was validated by ICP‐MS technique.  相似文献   

7.
Three types of agricultural waste, citrus maxima peel (CM), passion fruit shell (PF) and sugarcane bagasse (SB), were used to produce biosorbents for removing the heavy metal ions of copper(II), cadmium(II), nickel(II) and lead(II) from a pH 5.0 solution. The properties of biosorbents were characterized using scanning electron microscopy (SEM), zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, elemental analyzer and tests of cation exchange capacity (CEC). The result indicated that the selected biosorbents possess rich carboxyl (COOH) and hydroxyl (OH) groups to produce a complexation with the heavy metals. Moreover, the negative surface charge of the biosorbent might adsorb the metal ions through the ion exchange. All of the adsorption isotherms indicated that L-type characters represented complexation and ion exchanges that were the adsorption mechanisms of biosorbents toward heavy metals. Biosorbents with higher oxygen content might generate high adsorption capacities. The adsorption capacities of CM and PF, estimated from the fitting to the Langmuir isotherm, are similar to those reported by others regarding biosorbents.  相似文献   

8.
Stability constants of cyanoacetato complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and lead(II) were determined potentiometrically at 25.0 +/- 0.1 degrees and ionic strength 2M (sodium perchlorate). The stability constants were evaluated by a weighted least-squares method.  相似文献   

9.
The study of the adsorptions of cadmium and oxalate ions at the titania/electrolyte interface and the changes of the electrical double layer (edl) structure in this system are presented. The adsorption of cadmium or oxalate ions was calculated from an uptake of their concentration from the solution. The concentration of Cd(II) or oxalate ions in the solution was determined by radiotracer method. For labeling the solution 14C and 115Cd isotopes were used. Coadsorption of Cd(II) and oxalic ions was determined simultaneously. Besides, the main properties of the edl, i.e., surface charge density and zeta potential were determined by potentiometer titration and electrophoresis measurements, respectively. The adsorption of cadmium ions increases with pH increase and shifts with an increase of the initial concentration of Cd(II) ions towards higher pH values. The adsorption process causes an increase of negatively charged sites on anatase and a decrease of the zeta potential with an increase of initial concentration of these ions. The adsorption of oxalate anions at the titania/electrolyte interface proceeds through the exchange with hydroxyl groups. A decrease of pH produces an increase of adsorption of oxalate ions. The processes of anion adsorption lead to increase the number of the positively charged sites at the titania surface. However, specific adsorption of bidenate ligand as oxalate on one surface hydroxyl group may form inner sphere complexes on the metal oxide surface and may overcharge the compact part of the edl. The presence of oxalate ions in the system affects the adsorption of Cd(II) ions on TiO2, increasing the adsorption at low pH range and decreasing the adsorption at high pH range. Using adsorption as a function of pH data, some characteristic parameters of adsorption envelope were calculated.  相似文献   

10.
Summary Coordination compounds formed by the interaction of 2,2bipyridylamine with silver(I), zinc(II) and cadmium(II) nitrates have been prepared and characterized by molecular conductance and i.r. spectral measurements down to 200 cm–1 in the solid state. Silver([) and zinc(II) nitrates formed 1 : 1 complexes, while cadmium(II) nitrate gave a 1 : 2 complex with 2,2-bipyridylamine. Molar conductivities indicate that the silver complex behaves as a uniunivalent electrolyte while the zinc(II) and cadmium(II) complexes behave as unidivalent electrolytes in methanol and dimethylformamide. All the complexes are considered monomeric with terminally bonded monodentate nitrato groups. Four-coordinate tetrahedral, three-coordinate planar and six-coordinate octahedral stereo chemistries are suggested for the zinc(II), silver(l) and cadmium(II) nitrate complexes with 2,2-bipyridylamine, respectively.  相似文献   

11.
The following Zn(II), Cd(II) and Hg(II) complexes of neutral and deprotonated 6-amino-1-methyl-5-nitroso-uracil (HL) were prepared and studied by u.v.-vis, 1H-NMR and i.r. techniques: ZnL2·4H2O,ZnL2(H2O)2·H2O, CdCl2(HL)2·2H2O and HgL2·2H2O. In Zn(II) and Hg(II) complexes, the ligand is coordinated in anionic nitroso-phenolic form, acting as a bidentate ligand through the nitrogen and oxygen atoms of the 5-nitroso and 6-oxide groups, respectively. In the cadmium complex, the ligand seems to be either N,O- or only N-bound to the metal ion, with chlorine bridging. From the data obtained, molecular structures are proposed for each complex.  相似文献   

12.
《Analytical letters》2012,45(15):3025-3039
Abstract

The chelating tendency of the antiinflammatory drugs piroxicam and tenoxicam towards copper (II), lead (II) and cadmium (II) ions has been investigated using both differential pulse polarography and cyclic voltammetry and the stability constants of the formed complexes have been compared. The effect of the nature of the supporting electrolyte, the pH and other parameters have also been considered.

Tenoxicam exhibits relatively stronger chelating properties than piroxicam towards each ion despite of their structural similarity.  相似文献   

13.
A high‐sensitivity sensing platform for lead(II) and cadmium(II) based on the bismuth modified carbon nanotubes (CNTs)‐poly(sodium 4‐styrenesulfonate) composite film electrode (CNTs‐PSS/Bi) was fabricated. The composite film CNTs‐PSS/Bi provided remarkably improved sensitivity and reproducibility compared with previously reported CNTs‐modified electrodes. The detection limits were estimated to be 0.04 ppb for lead(II) and 0.02 ppb for cadmium(II) with a preconcentration time of 120 s, respectively. The linear responses of Cd2+ and Pb2+ were over the ranges of 0.5–50 ppb and 0.5–90 ppb, respectively. Finally, the practical application of the proposed method was verified in the real water sample with satisfactory results.  相似文献   

14.
A highly sensitive and simple electroanalytical methodology is presented using an in-situ bismuth film modified edge plane pyrolytic graphite electrode (BiF-EPPGE) which is exemplified with the simultaneous determination of cadmium(II) and lead(II). Square-wave anodic stripping voltammetry is utilised with the effects of several experimental variables studied. Simultaneous additions of cadmium(II) and lead(II) were investigated where two linear ranges between 0.1-100 and 0.1-300 microg/L and also detection limits of 0.062 and 0.084 microg/L were obtained, respectively. The method was then successfully applied to the simultaneous determination of cadmium(II) and lead(II) in spiked river water, where recoveries of 100.5 and 98% were obtained, respectively. This electroanalytical protocol using edge plane pyrolytic graphite electrodes is one of the simplest methodologies to date using non-mercury based electrodes and is simpler and cheaper than alternatives such as carbon nanotube electrode arrays, suggesting the use of edge plane pyrolytic graphite electrode for routine sensing.  相似文献   

15.
The coordination chemistry and cationic binding properties of 2,6-bis(pyrazol-1-ylmethyl)pyridine (L1), 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L2), and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L3) with zinc(II) and cadmium(II) have been investigated. Reactions of L2 with zinc(II) and cadmium(II) nitrate or chloride salts produced monometallic complexes [Zn(NO3)2(L2)] (1), [ZnCl2(L2)] (2), [Cd(NO3)2(L2)] (3), and [CdCl2(L2)] (4). Solid state structures of 1 and 3 confirmed that L2 binds in a tridentate mode. While the nitrates in the zinc complex (1) adopt monodentate binding fashion, in cadmium complex (3), they exhibit bidentate mode. L1L3 show binding efficiencies of 99% for zinc(II), 60% for lead(II), and 30% for cadmium(II) cations from aqueous solutions of the metal ions. Theoretical studies using Density Functional Theory were consistent with the observed extraction results.  相似文献   

16.
Data were obtained for the solution behaviour of cadmium(II) and mercury(II) carboxylates in alcohols. A brief survey of the arguments about the existence of micelles and the current models of surfactant aggregation in non-aqueous media is presented. The plots of solubility against the carboxylate or alcohol chain length are linear for both cadmium and mercury soaps with the solubility having values higher in secondary than primary alcohols. The solution behaviour of metal 9, 10-dihydroxyoctadecanoates shows the effect on solubility, of substitution of dihydroxyl groups at the middle of the carbon chain. Recrystallisation temperatures of the dihydroxyoctadecanoates suggest the loss of stereochemical configuration in solution and indicate similarity in the mode of aggregation. The solution temperatures of cadmium soaps are very close to the temperatures of their phase transitions while those of mercury and lead soaps are lower than their fusion or phase transition temperatures. This behaviour is interpreted to be due to differences in the energy required for the disruption of the crystal structure which dominates the solubility mechanism.  相似文献   

17.
The extraction rates of cadmium(II) and zinc(II) with dithizone (H2dz) in the presence of nitrilotriacetic acid (NTA) were measured, and the possible kinetic separation of cadmium(II) from zinc(II) was investigated. Upon the addition of NTA, the difference in the extraction rate between cadmium(II) and zinc(II) became large. Based on the observed rate constant under the condition [NTA] = 1 x 10(-2) mol dm-3, [H2dz]org = 1 x 10(-3) mol dm-3, and pH = 7.0, the shaking time required for the quantitative separation of cadmium(II) from zinc(II) was calculated to be between 326 and 995 s. The experimental results agreed with the prediction, and the quantitative separation of cadmium(II) from zinc(II) was performed within the above-mentioned range of shaking times.  相似文献   

18.
Three new substituted 4-(alkylaminoisonitrosoacetyl)biphenyls (ligands) derived from 4-biphenylhydroxymoyl chloride and corresponding amines were synthesized. The following aromatic and aliphatic amines were used for ligands: ethanolamine, 2-amino-4-methylphenol, and 2-(aminomethyl)pyridine. Mononuclear or binuclear cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), and lead(II) complexes with these ligands were synthesized. These compounds were characterized by elemental analyses, AAS, infrared spectra, and magnetic susceptibility measurements. The ligands were additionally characterized by 1H NMR. The results suggest that the ligands act as tridentate ligands. The text was submitted by the authors in English.  相似文献   

19.
Genichiro Kura 《Polyhedron》1986,5(12):2097-2100
The stability constants of the complexes of cyclophosphate anions and copper(II), cadmium(II) and lead(II) ions were determined by potentiometry with the use of ion-selective electrodes. For each metal ion, the stability constant of the 1:1 complex increases linearly with the charge on the phosphate ion. For the same cyclophosphate ion, the stability constants also increase with increase in the crystal radii of the cation, i.e. in the order: Cu2+ < Cd2+ < Pb2+. These results suggest that the complex formed is a typical outer-sphere type based on electrostatic forces.  相似文献   

20.
A solid phase extraction method is established for preconcentration of nickel, lead, cadmium, copper and cobalt using pipette tip solid phase extraction. The presented process was dependent on chelation of analytes with 1,3,4-thiadiazole-2,5-dithiol, then allowing the solution to flow through an activated carbon cloth packed pipette tip. The adsorbed metal chelates on the surface of activated carbon cloth were eluted by 5 mL of 3 M HNO3. The concentrations of nickel, lead, cadmium, copper and cobalt were detected using a flame atomic absorption spectrometer (FAAS). The pipette tip solid phase extraction exhibit a preconcentration factor of 120. The limit of detection values were 2.7, 1.7, 1.3, 2.0 and 2.9 µg L?1 for Ni(II), Pb(II), Cd(II), Cu(II) and Co(II), respectively. Validation of the method was checked by the analysis of TMDA-53.3 and TMDA-64.2 certified reference materials. The method was successfully applied for water and fertiliser samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号