首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Trace metals such as mercury, especially its organic compounds, are an important risk to the environment and to man due to their accumulation in the food chain. For this reason, the routine determination of the very toxic methylmercury, and of other organic and inorganic mercury compounds in marine and land animals, vegetables, fruits and fresh water is of increasing importance in health and environmental control programmes throughout the world. The majority of speciation methods for organomercurials involve a series of fundamental steps for the identification and quantification of samples of biological origin: extraction or isolation from the matrix; derivatisation and concentration; detection; separation of different species of interest and of interference. Each of these steps, as part of the chromatographic analysis of MeHg and of other organomercurials is revised in this study using food samples.  相似文献   

2.
Determinations of the concentration of individual mercury species from environmental samples have increased significantly over the past decade. The techniques used for the determination of mercury species in soils or sediments generally involve a series of analytical steps (extraction, separation, detection) that may all be prone to systematic errors. An inter‐laboratory validation study of the EPA draft method 3200 was conducted under the auspices of the United States Environmental Protection Agency on two specifically prepared soil matrices. The study was performed successfully by a limited number of participating laboratories. Evaluation of the data demonstrates that the method is more highly efficient for extracting the highly toxic methylmercury than inorganic mercury. The proposed method does not induce transformation of methylmercury to inorganic mercury. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
An accurate, precise, sensitive and automated non-chromatographic method for methylmercury speciation based on a selective continuous liquid-liquid extraction of methylmercury, into xylene, as bromide and cold mercury vapour generation directly from the organic phase and final ICP-AES mercury detection is proposed. Both separation steps, liquid-liquid and gas-liquid are accomplished in a continuous mode and on line with ICP-AES as detector. The detection limit attained for methylmercury was 4ng·ml–1 (as mercury). The precision of the determination at a concentration level around 20 times the detection limit was +-5%. The proposed methodology has been applied successfully to the speciation of methylmercury and inorganic mercury in spiked sea water and spiked urine samples.  相似文献   

4.
An analytical procedure for the determination of methylmercury in human hair after acid digestion using aqueous ethylation, headspace solid-phase microextraction sampling and final gas chromatography-cold-vapour atomic fluorescence spectrometry detection is described. Acid digestion, extraction procedure and chromatographic conditions were optimised. An optimal linear range using standard mercury solutions was found and concentration detection limits for the mercury species, MeHg and Hg2+, were about 50 and 80 ng/g, respectively, for 100 mg of human hair. The reproducibility of the developed analytical procedure assessed for hair samples with incurred MeHg was better than 18% (n=5). A certified reference material from the National Institute of Environmental Studies (Japan) was used for validation. Analysis of human hair collected from urban inhabitants was performed and the mean value of methylmercury content in hair samples was 0.764 +/- 0.732 microg/g for the population tested. The developed analytical method is simple, fast and a suitable procedure for the monitoring and screening of human exposure to methylmercury.  相似文献   

5.
The use of a carbon paste electrode modified with a thiolic resin for the determination of inorganic mercury and organomercury compounds, present simultaneously in a sample, is described. The compounds are first preconcentrated at the electrode surface by means of a purely chemical reaction with the modifier on the electrode surface. The high affinity of the modifier for the mercury compounds ensures low limits of detection and determination. Differentiation between several mercury species is possible by control of the reduction potential applied to the working electrode. This selective reduction results in the formation of atomic mercury at the electrode surface which can be determined with a very high sensitivity by means of its re-oxidation wave in cyclic voltammetry. Optimization of the instrumental parameters and evidence for the reduction processes are discussed. Analysis of inorganic mercury in the presence of methylmercury, with a detection limit of 4 μg Hg 1−1, and of methylmercury in the presence of inorganic mercury, with a detection limit of 2 μg Hg 1−1, is described in detail. In both cases the preconcentration time is 6 min. Other organomercury species can also be quantified. Application of the method to environmental aquatic samples is discussed.  相似文献   

6.
A novel technique has been developed for the determination of trace amounts of methylmercury in sediment and biological tissues. The well known water vapor distillation technique for the isolation of methylmercury from different matrices was coupled with an RP C18 preconcentration using dithiocarbamate complexation. A newly developed HPLC-method allowed the separation of five different mercury species at different mercury masses with HPF/HHPN (High-Performance-Flow/Hydraulic-High-Pressure-Nebulizing) and detection by ICP-MS. The method takes advantage of the ability to measure individual isotopes. Recoveries of the water vapor distillation procedure samples for different mercury compounds from sediment were tested. For methylmercury, the detection limit for a 0.5 g sample was calculated to be 0.025 μg/kg. The new technique was assured using different reference materials. Received: 23 October 1996 / Revised: 14 February 1997 / Accepted: 16 February 1997  相似文献   

7.
A novel technique has been developed for the determination of trace amounts of methylmercury in sediment and biological tissues. The well known water vapor distillation technique for the isolation of methylmercury from different matrices was coupled with an RP C18 preconcentration using dithiocarbamate complexation. A newly developed HPLC-method allowed the separation of five different mercury species at different mercury masses with HPF/HHPN (High-Performance-Flow/Hydraulic-High-Pressure-Nebulizing) and detection by ICP-MS. The method takes advantage of the ability to measure individual isotopes. Recoveries of the water vapor distillation procedure samples for different mercury compounds from sediment were tested. For methylmercury, the detection limit for a 0.5 g sample was calculated to be 0.025 μg/kg. The new technique was assured using different reference materials.  相似文献   

8.
Inorganic mercury and methylmercury are determined in natural waters by injecting the filtered samples onto a low cost commercial flow injection system in which an anion exchange microcolumn is inserted after the injection loop (FIA-IE). If hydrochloric acid is used as the carrier solution, the HgCl4(2-) species (inorganic mercury) will be retained by the anion exchanger while the CH3HgCI species (methylmercury) will flow through the resin with negligible retention. Four anion exchangers and seven elution agents were checked, in a batch mode, to search for the best conditions for optimal separation and elution of both species. Dowex M-41 and L-cysteine were finally selected. Mercury detection was performed by cold vapour-electrothermal atomic adsorption spectrometry (HG-ETAAS). Both systems were coupled to perform the continuous on-line separation/detection of both inorganic mercury and methylmercury species. Separation and detection conditions were optimized by two chemometric approaches: full factorial design and central composite design. A limit of detection of 0.4 microg L(-1) was obtained for both mercury species (RSD < 3.0% for 20 microg L(-1) inorganic and methylmercury solutions). The method was applied to mercury speciation in natural waters of the Nerbioi-lbaizabal estuary (Bilbao, North of Spain) and recoveries of more than 95% were obtained.  相似文献   

9.
《Analytica chimica acta》2004,511(2):289-294
A piezoelectric detection system coupled with a liquid chromatographic system is developed for the speciation of inorganic mercury(II) and methylmercury. Piezoelectric detection has been demonstrated to be a very sensitive detection system for total mercury determination when a gold-coated piezoelectric quartz crystal was used. The analytical features of this detection unit make it very suitable to be used as a detector coupled with a liquid chromatographic system for monitoring mercury species. After separation by a chromatography column (Spherisorb ODS-2, 5 μm,  mm i.d.), mercury species are liberated and reduced, by using stannous chloride, and are detected as an amalgam on the gold-coated piezoelectric quartz crystal, the sensor subsequently was regenerated by passing a peroxydisulfate solution. This detector exhibits good sensitivity, it allows the determination of mercury at sub-ppb concentration levels (0.30-1.20 μg l−1). The precision, expressed as relative standard deviation, was ±2.7% (n=11) for a 0.5 μg l−1 total mercury concentration. The proposed method is free of interferences and it allowed the determination of inorganic mercury and methylmercury species in natural waters.  相似文献   

10.
This review summarises current knowledge on Hg species and their distribution in the hydrosphere and gives typical concentration ranges in open ocean, coastal and estuarine waters, as well as in rivers, lakes, rain and ground waters. The importance of reliable methods for the determination of Hg species in natural waters and the analytical challenges associated with them are discussed. Approaches for sample collection and storage, pre-concentration, separation, and detection are critically compared. The review covers well established methods for total mercury determination and identifies new approaches that offer advantages such as ease of use and reduced risk of contamination. Pre-concentration and separation techniques for Hg speciation are divided into chromatographic and non-chromatographic methods. Derivatisation methods and the coupling of pre-concentration and/or separation methods to suitable detection techniques are also discussed. Techniques for sample pre-treatment, pre-concentration, separation, and quantification of Hg species, together with examples of total Hg determination and Hg speciation analysis in different natural (non-spiked) waters are summarised in tables, with a focus on applications from the last decade.  相似文献   

11.
New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks.The instrumentation has been applied to the determination of ng l−1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l−1 for methylmercury and 0.4 ng l−1 for inorganic mercury based on the 3j criterion.  相似文献   

12.
《Microchemical Journal》2010,94(2):206-210
A simple and reliable method to determine total and inorganic mercury in biological certified reference material (CRM) by cold vapor atomic absorption spectrometry (CV AAS) is proposed. After the CRM treatment at room temperature with tetramethylammonium hydroxide (TMAH), inorganic mercury is determined by CV AAS. Total mercury is measured by the same technique, after sample acid digestion in a microwave oven. Organic mercury, basically methylmercury, is obtained by difference. In both procedures, the quartz tube is kept at room temperature. By means of analysis of the following reference materials: pig kidney, lobster hepatopancreas, dogfish liver and mussel tissue, it was clear that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. Only one calibration curve against aqueous standards in acidic medium was carried out for both procedures. The concentrations obtained by both procedures are in agreement with the certified values according to the t-test at a 95% confidence level. The relative standard deviations were lower than 3.0% for digested CRM and 6.0% for CRM treated with TMAH for most of the samples. The limits of detection in the samples were 0.02 µg g 1 and 0.04 µg g 1 for inorganic and total Hg, respectively, since the sample mass for total mercury was half of that for inorganic mercury determination. Simplicity and high efficiency without using chromatographic techniques are some of the qualities of the proposed method, being adequate for fractionation analysis of mercury in biological samples.  相似文献   

13.
14.
A simple and reliable method to determine total and inorganic mercury in biological certified reference material (CRM) by cold vapor atomic absorption spectrometry (CV AAS) is proposed. After the CRM treatment at room temperature with tetramethylammonium hydroxide (TMAH), inorganic mercury is determined by CV AAS. Total mercury is measured by the same technique, after sample acid digestion in a microwave oven. Organic mercury, basically methylmercury, is obtained by difference. In both procedures, the quartz tube is kept at room temperature. By means of analysis of the following reference materials: pig kidney, lobster hepatopancreas, dogfish liver and mussel tissue, it was clear that the difference between the total and inorganic mercury concentrations agrees with the methylmercury concentration. Only one calibration curve against aqueous standards in acidic medium was carried out for both procedures. The concentrations obtained by both procedures are in agreement with the certified values according to the t-test at a 95% confidence level. The relative standard deviations were lower than 3.0% for digested CRM and 6.0% for CRM treated with TMAH for most of the samples. The limits of detection in the samples were 0.02 µg g− 1 and 0.04 µg g− 1 for inorganic and total Hg, respectively, since the sample mass for total mercury was half of that for inorganic mercury determination. Simplicity and high efficiency without using chromatographic techniques are some of the qualities of the proposed method, being adequate for fractionation analysis of mercury in biological samples.  相似文献   

15.
A simple and ultrasensitive method, which was based on cold vapor generation (CVG) coupled to atomic fluorescence spectrometry (AFS), was proposed for speciation analysis of inorganic mercury (Hg2+) and methylmercury (MeHg) in water samples. In the presence of UV irradiation, all the mercury (MeHg+Hg2+) in a sample solution can be reduced to Hg0 by SnCl2; without UV irradiation, only Hg2+ species can be determined. So the concentration of MeHg can be obtained from the difference of the total mercury and Hg2+ concentration; thus, speciation analysis of Hg2+ and MeHg was simply achieved without chromatographic separation. Under the optimized experimental conditions, the limits of detection were 0.01 ng mL-1 for both Hg2+ and MeHg. The sensitivity and limit of detection were not dependent on the mercury species, and a simple Hg2+ aqueous standard series can be used for the determination of both Hg2+ and MeHg.  相似文献   

16.
Despite an increasing focus on low level methods for determination of mercury species in water over the last decades, few studies have paid attention to direct effects of different sample preparation methods (i.e. preservation techniques) on natural freshwater samples. In this study we show how different preservation techniques give significantly different concentrations of total and methylmercury in freshwaters (9 and 14% on average, respectively). Natural stream samples from a forested lake catchment were studied. Mean stream sample concentrations of total (3.6 ng/L) and methylmercury (0.06 ng/L) reflect levels typical for pristine humic boreal catchments. The main reason for the observed average differences in total and methylmercury concentrations is the use of one instead of two sample bottles and timing of sample acidification, respectively.  相似文献   

17.
Mercury in contaminated soils and sediments could be extracted by various chemical reagents in order to determine the different mercury species and partitions, providing useful information of toxicology, bioavailability and biogeochemical reactivity. Unfortunately, at present, neither specific extractants nor standard protocols exist for the isolation of particular mercury species. Although there has been considerable research focused on reagents for extracting mercury species, there is still little consensus. Thus, workers are advised to select the most appropriate reagent based on the nature of their sample, and to take all possible steps to validate the analyses performed. Therefore, the aim of this paper is to review the current reagents used for determining total mercury and its speciation as well as fractionation such as methylmercury, ethylmercury, elemental mercury, mercury sulphide and organically bound mercury by supposed selective (one reagent) and sequential (several reagents) extractions. The gathering information presented here bring to light the need for standard protocol for which the used chemical reagents should take into account the particular chemistry of mercury associated with specific properties of soil and sediment. Beside this required scheme, appropriate reference materials are also demanded.  相似文献   

18.
Mercury and methylmercury in hair samples were determined by neutron activation analysis. Samples were digested in 10M NaOH, and methylmercury was then isolated by solvent extraction with toluene. The isolated methylmercury was then absorbed onto cysteine paper. The dried cysteine paper was activated for six hours in a TRIGA reactor and methylmercury was analysed via 279.2 keV of203Hg. Methylmercury and total mercury in some standard reference materials were also analysed, and the results were in good agreement with those reported in the literature. Results for hair samples showed that the methylmercury concentration ranged 14–40% of the total mercury. Gas chromatogram showed that methylmercury was only present in the samples analysed. In samples where methylmercury and other organic mercury are presented, the NAA method is good for the determination of the total organic mercury only.  相似文献   

19.
Hollow-cathode (HC) radiofrequency glow-discharge (rf-GD) optical-emission spectrometry (OES) has been used as detector for the determination of inorganic mercury by cold-vapour (CV) generation in a flow-injection (FI) system. Both NaBH4 and SnCl2 were evaluated as reducing reagents for production of mercury CV. The conditions governing the discharge (pressure, He flow rate, and delivered power) and Hg CV generation (NaBH4 or SnCl2 concentration and reagent flow rate) were optimized using both reducing agents. The analytical performance characteristics of FI-CV-rf-GD-OES for mercury detection were evaluated at the 253.6 nm emission mercury line. Detection limits (DL) of 0.2 ng mL(-1) using SnCl2 and 1.8 ng mL(-1) using NaBH4 were obtained (100 microliter sample injections were used). When the optimized experimental conditions using SnCl2 had been determined, the analytical potential of this CV-rf-GD-OES method was investigated as on-line detector for high-performance liquid chromatographic (HPLC) speciation of mercury (Hg(II) and methylmercury). The HPLC-CV-rf-GD-OES detection limits for 100 microliter sample injections were found to be 1.2 and 1.8 ng mL(-1) (as mercury) of inorganic mercury and methylmercury, respectively. The reproducibility observed was below +/- 8% for both species. Finally, the HPLC-CV-rf-GD-OES system developed was successfully applied to the determination of methylmercury (speciation) in two certified reference materials, Dorm-2 and Dolt-2.  相似文献   

20.
建立了微波萃取高效液相色谱-冷原子荧光光谱法(MAE-HPLC-CVAFS)测定沉积物中甲基汞(MeHg+)和无机汞(Hg2+)的方法。以0.1%(V/V)2-巯基乙醇为萃取剂,用于沉积物样品中汞形态的萃取,在80℃下萃取8 min,萃取液直接注入HPLC-CVAFS系统分析。在优化条件下,MeHg+和Hg2+的检出限分别为0.58和0.48 ng/g;加标回收率分别为96.2%和95.8%;RSD(n=6)分别为5.7%和4.1%。对标准参考物质(IAEA-405和ERM-CC580)的分析结果与推荐值一致。本方法简单、快速、准确、检出限低,抗干扰能力强,具有很好的实用性和推广价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号