首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a novel approach to obtain high metal sorption capacity utilizing a membrane containing chitosan and an immobilized reactive dye (i.e. Reactive Yellow-2). The composite membrane was characterized by SEM, FT-IR, swelling test, and elemental analysis. The membrane has uniform small pores distribution and the pore dimensions are between 5 and 10 μm, and the HEMA:chitosan ratio was 50:1. The reactive dye immobilized composite membrane was used in the removal of heavy metal ions [i.e., Pb(II), Hg(II) and Cd(II)] from aqueous medium containing different amounts of these ions (5-600 mg l−1) and at different pH values (2.0-7.0). The maximum adsorption capacities of heavy metal ions onto the composite membrane under non-competitive conditions were 64.3 mmol m−2 for Pb(II), 52.7 mmol m−2 for Hg(II), 39.6 mmol m−2 for Cd(II) and the affinity order was Pb(II) > Hg(II)>Cd(II).  相似文献   

2.
In this study, experimental measurements have been made on the batch adsorption of cadmium and lead ions from aqueous solutions using poly(guanidine modified 2‐acrylamido‐2‐methylpropan sulfonic acid/acrylic acid/N‐vinylpyrrolidone/2‐Hydroxyethyl methacrylate), P(AMPSG/AAc/NVP/HEMA) hydrogels. The guanidyl end group bearing AMPSG monomer was synthesized from the reaction of AMPS and guanidine. The hydrogels were prepared by UV‐curing technique. The morphology of the dry H10‐hydrogel sample was examined by SEM. The influence of the uptake conditions, such as pH, functional monomer per cent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, was also tested. The selectivity of the hydrogel toward the different metal ions tested was Hg(II) > Pb(II) > Au(III) > Cd(II). The adsorption isotherm models were applied to the experimental data, and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Cd(II) and Pb(II) ions on P(AMPSG/AAc/NVP/HEMA) hydrogel. It was found that adsorbed lead and cadmium ions on P(AMPSG/AAc/NVP/HEMA) hydrogel can be effectively desorbed by acid leaching and the regenerated P(AMPSG/AAc/NVP/HEMA) hydrogel can be reused almost five times less without any loss of adsorption capacity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Salih B  Denizli A  Kavaklı C  Say R  Pişkin E 《Talanta》1998,46(5):1205-1213
The dithizone-anchored poly (EGDMA-HEMA) microbeads were prepared for the removal of heavy metal ions (i.e. cadmium, mercury, chromium and lead) from aqueous media containing different amounts of these ions (25-500 ppm) and at different pH values (2.0-8.0). The maximum adsorptions of heavy metal ions onto the dithizone-anchored microbeads from their solutions was 18.3, Cd(II); 43.1, Hg(II); 62.2, Cr(III) and 155.2 mg g(-1) for Pb(II). Competition between heavy metal ions (in the case of adsorption from mixture) yielded adsorption capacities of 9.7, Cd(II); 28.7, Hg(II); 17.6, Cr(III) and 38.3 mg g(-1) for Pb(II). The same affinity order was observed under non-competitive and competitive adsorption, i.e. Cr(III)>Pb(II)>Hg(II)>Cd(II). The adsorption of heavy metal ions increased with increasing pH and reached a plateaue value at around pH 5.0. Heavy metal ion adsorption from artificial wastewater was also studied. The adsorption capacities are 4.3, Cd(II); 13.2, Hg(II); 7.2, Cr(III) and 16.4 mg g(-1) for Pb(II). Desorption of heavy metal ions was achieved using 0.1 M HNO(3). The dithizone-anchored microbeads are suitable for repeated use (for more than five cycles) without noticeable loss of capacity.  相似文献   

4.
Heavy metal contamination of waters and soils is particularly dangerous to the living organisms. Different studies have demonstrated that hydroxyapatite has a high removal capacity for divalent heavy metal ions in contaminated waters and soils. The removal of Cd from aqueous solutions by hydroxyapatite was investigated in batch conditions at 25+/-2 degrees C. Cadmium was applied both as single- or multi-metal (Cd + Pb + Zn + Cu) systems with initial concentrations from 0 to 8 mmol L(-1). The adsorption capacity of hydroxyapatite in single-metal system ranged from 0.058 to 1.681 mmol of Cd/g of hydroxyapatite. In the multi-metal system competitive metal sorption reduced the removal capacity by 63-83% compared to the single-metal system. The sorption of Cd by hydroxyapatite follows the Langmuir model. Cadmium immobilization occurs through a two-step mechanism: rapid surface complexation followed by partial dissolution of hydroxyapatite and ion exchange with Ca resulting in the formation of a cadmium-containing hydroxyapatite.  相似文献   

5.
Binary and ternary mixtures of some of the following heavy metal ions Zn(II), Ni(II), Pb(II), Co(II) and Cd(II) were analyzed by a ligand substitution kinetic method. Three-way data matrices were generated by acquisition of UV-Vis spectra (332-580 nm) as a function of the time of a substitution reaction observed between the complex of the heavy metal ions with the non selective metallochromic indicator 4-(2-pyridylazo) resorcinol (PAR) and EDTA, and of different relative concentration of the metal ions (1-6 mM). The PARAFAC trilinear model, without restrictions, was used in the data analysis. A full decomposition of the data matrices was obtained (spectra, concentration and time profiles). It was shown that ligand substitution kinetic methods coupled to three-way chemometric analytical methods can be used for the development of robust sensors for the analysis of binary [Zn(II)+Ni(II), Pb(II)+Cd(II), Zn(II)+Pb(II)] or ternary [Zn(II)+Pb(II)+Co(II)] mixtures of metal ions in the micromolar concentration range.  相似文献   

6.
In the present work, Pb(II) and Cd(II) ion adsorption onto inert organic matter (IOM) obtained from ground dried plants: Euphorbia echinus, Launea arborescens, Senecio anthophorbium growing in semi-arid zones of Morocco and Carpobrotus edulis as the Mediterranean plant has been studied. A suspension of plant deroed micro-particles adsorbs lead and cadmium present as ionic species, with a higher affinity for Pb(II). The kinetics and the maximum capacity adsorption depend on the type of plant as well as on the metal ions (atomic weight, ionic radius and electronegativity). The adsorption process is affected by various parameters such as contact time, solution volume to mass of plant particles ratio (m/V), particle size, solution pH and metal concentration. A dose of 25 g/l of adsorbent was optimal to obtain maximum adsorption of both metal ions. The maximum metal uptake was obtained with particles of organic matter of <50 microm. As to classical ionic adsorption phenomena, the adsorption of both metal ions increases with the increase of the initial concentration in the solution. For the two metal cations, the uptake efficiency of the studied plants ranged from: C. edulis>E. echinus>S. anthophorbium>L. arborescens, however, the differences are rather small. Two different waste water types (domestic and industrial) were tested and good results were obtained for removal of Pb(II) and Cd(II) at more than 90%. The removal of the metal and mineral ions waste water was observed for PO(4)(3-) at 88%, for NO(3)(-) at 96.5% and for metal ions (Pb(II), Cd(II), Cu(II) and Zn(II)) at about 100%, using IOM as absorbent.  相似文献   

7.
A chelating resin based on modified poly (styrene‐alt‐maleic anhydride) with 3‐aminobenzoic acid was synthesized. This modified resin was further reacted by 1,2‐diaminoethane or 1,3‐diaminopropane in the presence of ultrasonic irradiation to prepare tridimensional chelating resin for the removal of heavy metal ions from aqueous solutions. The adsorption behavior of Fe(II), Cu(II), Zn(II) and Pb(II) ions was investigated by synthesized chelating resins in various pH. Among the synthesized resins, CSMA‐AB1 and CSMA‐AB2 demonstrated a high affinity for the selected metal ions compared to SMA‐AB, and the order of removal percentage changes as follow: Fe(II) > Cu(II) > Zn(II) > Pb(II). The adsorption of all metal ions in acidic medium was moderate, and it was favored at the pH value of 6 and 7. Also, the prepared resins were examined for removal of metal ions from industrial wastewater and were shown to have a very efficient adsorption in the case of Cu(II), Fe(II) and Pb(II); however, the adsorption of Zn(II) was lower than others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis and thermogravimetric analysis/derivative thermogravimetry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
13X分子筛去除水中重金属离子的研究   总被引:3,自引:0,他引:3  
以人工合成的13X型分子筛为吸附剂,研究了水中Pb2 、Cd2 和Cu2 在分子筛上的吸附行为,讨论了Pb2 、Cd2 和Cu2 共存条件下的竞争吸附,并考察了水中存在的Na 、Mg2 、Ca2 等离子对分子筛吸附去除重金属的影响.实验结果表明,13X分子筛对Pb2 、Cd2 和Cu2 3种离子的吸附符合Langmuir模型,最大吸附量分别为2.47mmol/L、2.0mmol/L和1.78mmol/L.在竞争吸附条件下,13X分子筛对3种重金属离子的选择性依次为pb2 >Cd2 >Cu2 .水中存在的Na 、Mg2 、Ca2 等对分子筛吸附重金属效率有一定的影响,其中Ca2 对Cu2 在分子筛上的去除影响最为显著.  相似文献   

9.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

10.
Different metal-complexing ligands carrying synthetic adsorbents have been reported in the literature for heavy metal removal. We have developed a novel and new approach to obtain high metal adsorption capacity utilizing 2-methacrylamidohistidine (MAH) as a metal-complexing ligand. MAH was synthesized by using methacrylochloride and histidine. Spherical beads with an average size of 150–200 μm were obtained by the radical suspension polymerization of MAH and 2-hydroxyethylmethacrylate (HEMA) conducted in an aqueous dispersion medium. Owing to the reasonably rough character of the bead surface, p(HEMA-co-MAH) beads had a specific surface area of 17.6 m2 g−1. Synthesized MAH monomer was characterized by NMR. p(HEMA-co-MAH) beads were characterized by swelling studies, FTIR and elemental analysis. These p(HEMA-co-MAH) affinity beads with a swelling ratio of 65%, and containing 1.6 mmol MAH g−1 were used in the adsorption/desorption of copper(II) ions from metal solutions. Adsorption equilibria was achieved in ∼2 h. The maximum adsorption of Cu(II) ions onto pHEMA was ∼0.36 mg Cu(II) g−1. The MAH incorporation significantly increased the Cu(II) adsorption capacity by chelate formation of Cu(II) ions with MAH molecules (122.7 mg Cu(II) g−1), which was observed at pH 7.0. pH significantly affected the adsorption capacity of MAH incorporated beads. The observed adsorption order under non-competitive conditions was Cu(II)>Cr(III)>Hg(II)>Pb(II)>Cd(II) in molar basis. The chelating beads can be easily regenerated by 0.1 M HNO3 with higher effectiveness. These features make p(HEMA-co-MAH) beads very good candidate for Cu(II) removal at high adsorption capacity.  相似文献   

11.
CMC-Na/DETA-B62型蛇笼树脂对金属离子的吸附性能   总被引:1,自引:0,他引:1  
本文研究了自合成的蛇笼型螯合树脂-二乙烯三胺交联甘油环氧树脂/羰甲基纤维素体系对Cd^2 ,Pb^2 ,Fe^2 的吸附量,吸附动力学,等温吸附过程等静态吸附性能,同时研究了pH值等因素对吸附性能的影响。实验结果表明,该树脂对Cd^2 具有较强的吸附选择性,能在Cd^2 ,Pb^2 ,Fe^2 3种离子共存时选择吸附Cd^2 ,其选择性系数分别为Kcd^2 /pb^2 =3.77,Kcd^2 /Fe^2 =9.61。该树脂对上述3种离子的吸附量可分别达4.00,1.06,0.42mmol/g。该类树脂可用于含重金属离子污水的处理和金属离子的分离等方面。  相似文献   

12.
《Analytical letters》2012,45(9):1807-1820
ABSTRACT

5-amino-1,3,4-thiadiazole-2-thiol groups attached on a silica gel surface have been used for adsorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) from aqueous solutions. The adsorption capacities for each metal ion were (in mmol.g?1): Cd(II)= 0.35, Co(II)= 0.10, Cu(II)= 0.15, Fe(III)= 0.20, Hg(II)= 0.46, Ni(II)= 0.16, Pb(II)= 0.13 and Zn(II)= 0.15. The modified silica gel was applied in the preconcentration and quantification of trace level metal ions present in water samples (river, and bog water).  相似文献   

13.
Two new 4-aminoantipyrene chemically-immobilized silica gel phases: ii (N,N-donor) and iii (N,O-donor), were synthesized and characterized by IR and surface coverage determination. The latter was accomplished by thermal desorption and metal probe methods, giving 0.300 and 0.312 mmol g(-1) for ii and 0.220 and 0.250 mmol g(-1) for iii. Moreover, potentiometric titration provided a surface coverage of 0.323 mmol g(-1) for ii. The metal capacity values in mmol g(-1) of ii, iii and the active silica gel phase i for a series of di- and trivalent metal ions were determined at pH 1.0 - 6.7. Phase i showed the lowest values, while ii and iii reflected higher affinity toward most of the metal ions. The highest values were 0.300 for Hg(II)-ii and 0.220 mmol g(-1) for Cd(II)-iii. Distribution coefficients (log Kd) were in the range of 3.57 - 4.76 for ii and 2.32 - 3.46 for iii, thus confirming certain selectivity characters of the solid extractors. The application of the phases as solid extractors and preconcentrators for some heavy metal ions is presented. Good percentage extraction and removal of 94 - 98 +/- 4 - 6% of the spiked 1.000 microg ml(-1) of Hg(II), Cd(II), Pb(II), Cu(II) and Zn(II) and good percentage recovery of 94 - 99 +/- 3 - 6% of 50 ng ml(-1) of these ions from tap water samples were obtained. Stability constants of H(I) and Cu(II) with ii for the two-phase mixture at 25 degrees C and I = 0.1 (KCI) were determined potentiometrically. The pKa of ii are 5.6 and 8.4, while the log K values for CuHL and CuL (L = ii) are 6.3 and 5.8, respectively, leading to the determination of several analytical data for Cu(II)-ii.  相似文献   

14.
将5-氨基水杨酸接枝到PGMA/SiO2微粒的聚甲基丙烯酸缩水甘油酯(PGMA)大分子链上,成功制备了一种新型螯合吸附材料ASA-PGMA/SiO2。采用静态法研究了ASA-PGMA/SiO2对重金属离子Cu2+、Cd2+、Zn2+、Pb2+的吸附性能,结果表明其对Cu2+、Cd2+、Zn2+、Pb2+具有很强的螯合吸附能力,吸附容量分别可以达到0.42、0.40、0.35、0.31mmol/g。体系的pH对吸附容量影响较大,吸附行为服从Langmuir和Freundlich吸附模型。使用0.1mol/L的盐酸溶液就可实现重金属离子的解吸。通过反复吸附-解吸实验证明ASA-PGMA/SiO2具有良好的重复使用性能。  相似文献   

15.
Three low-cost adsorbents (purified raw attapulgite (A-ATP), high-temperature-calcined attapulgite (T-ATP), and hydrothermal loading of MgO (MgO-ATP)) were prepared as adsorbents for the removal of Cd(II) and Pb(II). By evaluating the effect of the initial solution pH, contact time, initial solution concentration, temperature and coexistence of metal ions on Cd(II) and Pb(II) adsorption, the experimental results showed that MgO-ATP was successfully prepared by hydrothermal reaction and calcination as well as appearing to be a promising excellent adsorbent. At an initial pH of 5.0, A-ATP, T-ATP and MgO-ATP reached maximum adsorption amounts of 43.5, 53.9 and 127.6 mg/g for Pb(II) and 10.9, 11.2, and 25.3 mg/g for Cd(II) at 298 K, respectively. The Cd(II) adsorption on A-ATP was fitted by the Freundlich model, while the adsorption of Pb(II) and Cd(II) on T-ATP and MgO-ATP as well as Pb(II) adsorption on A-ATP agreed with the Langmuir model. All kinetic experimental data favored pseudo second-order model. The calculated thermodynamic parameters suggested that Pb(II) adsorption onto MgO-ATP was spontaneous and exothermic. When considering foreign metal ions, the three adsorbents all presented preferential adsorption for Pb (II). Chemical adsorption had a high contribution to the removal of Cd(II) and Pb(II) by modified attapulgite. In summary, the adsorption was greatly enhanced by the hydrothermal loading of MgO. It aimed to provide insights into the MgO-ATP, which could be able to efficiently remove Cd(II) and Pb(II) and serve as an economic and promising adsorbent for heavy metal-contaminated environmental remediation.  相似文献   

16.
In the present study, the competitive adsorption characteristics of binary and ternary heavy metal ions Pb2+, Cu2+, and Cd2+ on microporous titanosilicate ETS-10 were investigated in batch systems. Pure microporous titanosilicate ETS-10 was synthesized with P25 as the Ti source and characterized by the techniques of X-ray diffraction (XRD), field emission-scanning electron microscope (FESEM), nitrogen adsorption, and zeta-potential. Equilibrium and kinetic adsorption data showed that ETS-10 displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Pb2+ > Cd2+ > Cu2+. The equilibrium behaviors of heavy metals species with stronger affinity toward ETS-10 can be described by the Langmuir equation while the adsorption kinetics of the metals can be well fitted to a pseudo-second-order (PSO) model.  相似文献   

17.
《中国化学快报》2021,32(10):3169-3174
In this study, Si-doped ferrihydrite (Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water. Subsequently, the physicochemical properties of Si-Fh before and after adsorption were further studied using several techniques. The Si-Fh exhibited good adsorption capacity for heavy metal ions such as Pb(II) and Cd(II). The maximum adsorption capacities of lead and cadmium are respectively 105.807, 37.986 mg/g. The distribution coefficients of the materials for Pb(II) and Cd(II) also showed a great affinity (under optimal conditions). Moreover, it was found that the adsorption fit well with the Freundlich isotherm and pseudo-second-order kinetic model which means this was a chemical adsorption process. It can be conducted from both characterization and model results that adsorption of Pb(II) and Cd(II) was mainly through the complexation interaction of abundance oxygen functional groups on the surface of Si-Fh. Overall, the Si-Fh adsorbents with many superiorities have potential for future applications in the removal of Pb(II) and Cd(II) from wastewater.  相似文献   

18.
《Comptes Rendus Chimie》2015,18(1):88-99
The performance of a microporous activated carbon prepared chemically from olive stones for removing Cu(II), Cd(II) and Pb(II) from single and binary aqueous solutions was investigated via the batch technique. The activated carbon sample was characterized using N2 adsorption–desorption isotherms, SEM, XRD, FTIR, and Boehm titration. The effect of initial pH and contact time were studied. Adsorption kinetic rates were found to be fast and kinetic experimental data fitted very well the pseudo-second-order equation. The adsorption isotherms fit the Redlich–Peterson model very well and maximum adsorption amounts of single metal ions solutions follow the trend Pb(II) > Cd(II) > Cu(II). The adsorption behavior of binary solution systems shows a relatively high affinity to Cu(II) at the activated carbon surface of the mixture with Cd(II) or Pb(II). An antagonistic competitive adsorption phenomenon was observed. Desorption experiments indicated that about 59.5% of Cu(II) and 23% of Cd(II) were desorbed using a diluted sulfuric acid solution.  相似文献   

19.
Porous Fe(3)O(4)@C nanocapsules with a diameter of about 120 nm (about 50 nm cavity) were synthesized by combining a sacrificial template method with solvothermal treatment. The N(2) adsorption-desorption isotherms reveals their mesoporous structure and large BET surface area (159.8 m(2) g(-1)). The magnetic investigation indicates their superparamagnetic nature and high saturation magnetization (55.93 emu g(-1)). The nanocapsules also exhibit negative zeta potential (-27.59 mV) and possess carboxyl groups on the outer carbon layer, which keeps them highly dispersive in aqueous solution and provides a chelating function for metal ions. The heavy metals removal test demonstrates the excellent affinity of nanocapsules, the high efficiency for different metals (>90%), 79 mg g(-1) adsorption capacity for Pb(2+) and ultrafast removal process (Pb(2+), 99.57% within 1 minute). Protected by a porous carbon layer, the nanocapsules display excellent acidic resistance and adsorption properties even in an acidic solution (pH = 3). Moreover, the metal ions can be easily adsorbed and desorbed through manipulating the pH value for adsorbent regeneration and heavy metal recycling.  相似文献   

20.
改性生物凝胶对重金属离子的吸附性能研究   总被引:1,自引:0,他引:1  
以桔子汁加工残渣为原料,制备钙型和氢型生物凝胶作为吸附剂,用于去除水溶液中的重金属离子.结果表明,上述凝胶在水溶液中稳定性较好,对重金属离子的吸附性能优良.钙型凝胶的吸附选择性顺序为:Fe3 >Pb2 >Cd2 >Zn2 ,饱和吸附容量分别为:Pb2 、Cd2 、Zn2 均为约1.1mmol/g、Fe3 为1.5mmol/g;氢型凝胶的吸附选择性顺序为:Pb2 >Zn2 >Cd2 .钙型凝胶对Fe3 的吸附行为明显不同于氢型凝胶,钙型凝胶以离子交换机理以及Fe3 与Ca2 之间的共沉淀作用为主;而氢型凝胶对Fe3 的吸附则以离子交换机理为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号