首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Complexation of iron(III) with thiocyanate ions has been calorimetrically and spectrophotometrically investigated in N,N-dimethylformamide (DMF) containing 0.4 mol/dm(3) (C(2)H(5))(4)NClO(4) or 1 mol/dm(3) NH(4)ClO(4) as a constant ionic medium at 25 degrees C. Calorimetric titration data were well explained in terms of the formation of [Fe(SCN)(n)]((3-n)+) (n = 1-5), and their formation constants, reaction enthalpies and entropies were determined. Electronic spectra of individual iron(III) thiocyanato complexes were also determined. The stepwise thermodynamic quantities changed monotonously, i.e. DeltaG degrees (1) < DeltaG degrees (2) < DeltaG degrees (3) < DeltaG degrees (4), < DeltaG degrees (5), DeltaH degrees (1) > DeltaH degrees (2) > DeltaH degrees (3) > DeltaH degrees (4) > DeltaH degrees (5), DeltaS degrees (1) > DeltaS degrees (2) > DeltaS degrees (3) > DeltaS degrees (4) > DeltaS degrees (5). This suggests that no extensive desolvation occurred at any step of complexation. On the basis of these thermodynamic quantities, it is postulated that the [Fe(SCN)(n)]((3-n)+) (n = 1-5) complexes have a six-coordinate octahedral structure as well as the [Fe(dmf)(6)](3+) ion, the octahedral structure of which has been confirmed by the EXAFS (extended X-ray absorption fine structure) method.  相似文献   

2.
Exchange of guest molecules into capsule shaped host molecules is the most fundamental process in host-guest chemistry. Several examples of quantitative measurements of guest exchange rates have been reported. However, there have been no reports on the activation energies of these processes. A molecule known as cavitand-porphyrin (H2CP) has been reported to have a flexible host structure capable of facilitating moderate guest exchange rates suitable for kinetic measurements of the guest exchange process with 1H NMR. In this article, various kinetic and thermodynamic parameters related to the process of encapsulation of small hydrocarbons into H2CP in CDCl3 solution were determined by 2D exchange spectroscopy (EXSY): association and dissociation rate constants (k(ass) = 320 M-1 s-1, k(diss) = 1.4 s-1 for methane at 25 degrees C), the corresponding activation energies (E(a,ass) = 27 kJ.mol-1, E(a,diss) = 58 kJ.mol-1), and thermodynamic parameters for each process (DeltaG++(ass) = 59 kJ.mol-1, DeltaG++(diss) = 72 kJ.mol-1, DeltaH++(ass) = 25 kJ.mol-1, DeltaH++(diss) = 55 kJ.mol-1, DeltaS++(ass) = -113 J.K-1.mol-1, and DeltaH++(diss) = 58 J.K-1.mol-1 for methane). The thermodynamic parameters (DeltaG degrees = -13 kJ.mol-1, DeltaH degrees = -31 kJ.mol-1, DeltaS degrees = -60 J.K-1.mol-1 for methane) for this encapsulation equilibrium determined by EXSY were comparable to those for methane determined by 1D 1H NMR titration (DeltaG degrees = -11 kJ.mol-1, DeltaH degrees = -33 kJ.mol-1, DeltaS degrees = -75 J.K-1.mol-1 for methane). In addition, the structure of the methane encapsulation process was revealed by ab initio MO calculations. The activation energies for methane association/dissociation were estimated from MP2 calculations (E(a,ass) = 58.3 kJ.mol-1, E(a,diss) = 89.1 kJ.mol-1, and DeltaH degrees = -30.8 kJ.mol-1). These values are in accord with the experimentally determined values. The observed guest exchange rates and energies are compared with the corresponding values of various reported capsule-shaped hosts.  相似文献   

3.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

4.
The first and second dissociation constants of tartaric, maleic and phthalic acids have been determined using EMF method in water-ethanol mixed solvents, over a wide range of solvent composition (0-60 wt% ethanol) at six different temperatures (ranging from 30 to 55 degrees C at intervals of 5 degrees C). The thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) for the first and the second ionization reactions were calculated from the well known equations. The results have been discussed in terms of the solute-solvent interactions and were compared with those of malic, malonic and succinic acids in the same mixed solvents.  相似文献   

5.
The complexes PtRu(5)(CO)(15)(PMe(2)Ph)(mu(6)-C) (2), PtRu(5)(CO)(14)(PMe(2)Ph)(2)(mu(6)-C) (3), PtRu(5)(CO)(15)(PMe(3))(mu(6)-C) (4), PtRu(5)(CO)(14)(PMe(3))(2)(mu(6)-C) (5), and PtRu(5)(CO)(15)(Me(2)S)(mu(6)-C) (6) were obtained from the reactions of PtRu(5)(CO)(16)(mu(6)-C) (1) with the appropriate ligand. As determined by NMR spectroscopy, all the new complexes exist in solution as a mixture of isomers. Compounds 2, 3, and 6 were characterized crystallographically. In all three compounds, the six metal atoms are arranged in an octahedral geometry, with a carbido carbon atom in the center. The PMe(2)Ph and Me(2)S ligands are coordinated to the Pt atom in 2 and 6, respectively. In 3, the two PMe(2)Ph ligands are coordinated to Ru atoms. In solution, all the new compounds undergo dynamical intramolecular isomerization by shifting the PMe(2)Ph or Me(2)S ligand back and forth between the Pt and Ru atoms. For compound 2, DeltaH++ = 15.1(3) kcal/mol, DeltaS++ = -7.7(9) cal/(mol.K), and DeltaG(298) = 17.4(6) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 4, DeltaH++ = 14.0(1) kcal/mol, DeltaS++ = -10.7(4) cal/(mol.K), and DeltaG(298) = 17.2(2) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 6, DeltaH++ = 18(1) kcal/mol, DeltaS++ = 21(5) cal/(mol.K) and DeltaG(298) = 12(2) kcal/mol. The shifts of the Me(2)S ligand in 6 are significantly more facile than the shifts for the phosphine ligand in compounds 2-5. This is attributed to a more stable ligand-bridged intermediate for the isomerizations of 6 than that for compounds 2-5. The intermediate for the isomerization of 6 involves a bridging Me(2)S ligand that can use two lone pairs of electrons for coordination to the metal atoms, whereas a tertiary phosphine ligand can use only one lone pair of electrons for bridging coordination.  相似文献   

6.
Majer V  Stulík K 《Talanta》1982,29(2):145-148
The complexes of the alkaline earth metals with fluoride and chloride were studied over the temperature range 15-85 degrees . The stability constants of the MX(+) complexes were determined by potentiometry with fluoride and chloride ion-selective electrodes and the appropriate thermodynamic functions (DeltaH(0)(298), DeltaS(0)(298) and DeltaG(0)(298)) were calculated.  相似文献   

7.
The complexation reaction between Cu(2+), Co(2+) and Ni(2+) metal cations with N,N'-bis(salicylidene)-1,2-phenylenediamine (salophen), in three nonaqueous polar solvents such as: acetonitrile (AN), dimethyl sulfoxide (DMSO), methanol (MeOH) and two binary mixtures of AN:DMSO and AN:MeOH at 25 degrees C were studied by spectrophotometric and conductometric methods. All investigated metal ions form 1:1 ML complex which their stability constants were determined and increase as Irving-Williams stability order of Co(2+)相似文献   

8.
Azab HA 《Talanta》1993,40(6):863-866
The secondary dissociation constants of o-phthalic and phosphoric acids have been determined in methanol + water (50 mass %) from reversible e.m.f. measurements of the cell of the type: Pt, H(2)(1 atm)|M(2)A(m), MHA(m), MCl|AgCl; Ag at different temperatures (288.15-308.15 K) and at different ionic strengths. To minimize the unsteadiness in potential measurements palladium coated platinum electrodes have been used. The large set of such e.m.f. values has been analyzed in terms of a multi-linear regression method recommended in recent IUPAC documents. The thermodynamic values DeltaG degrees , DeltaH degrees and DeltaS degrees , for the respective equilibria, were estimated. Standard pH values [pH*(s)] have been assigned to buffers in methanol + water (50 mass %) at temperatures between 288.15 and 308.15 K.  相似文献   

9.
Tetraaza complexes with M(2+) were produced in the gas phase by Electrospray (ESI) of solutions containing salts of M(2+)dinitrates and a tetraaza compound such as cyclam. The complex CyclM(2+) formed in solution and transferred to the gas phase via ESI was introduced into a reaction chamber containing known partial pressures of a ligand L. Equilibria between CyclM(2+) and L establish CyclML(n)(2+) = CyclML(n-1)(2+) + L and the equilibrium constants K(n,n-1) are determined with a mass spectrometer. Determinations at different temperatures lead to not only the DeltaG(0)(n,n-1) values but also the DeltaH(0)(n,n-1) and DeltaS(0)(n,n-1) values. Data for n = 1, 2, and 3 were obtained for L = H(2)O and CH(3)OH. The DeltaG(0)(1,0), DeltaH(0)(1,0) as well as DeltaG(0)(2,1), DeltaH(0)(2,1) values, when M(2+) = Mn(2+) and Zn(2+), were larger than those for Ni(2+) and Cu(2+). The ligand field theory and the Irvine-Williams series predict a reverse order, i.e., stronger bonding with Ni(2+) and Cu(2+) for simple ligand reactions with M(2+). An examination of the differences of the reactions in solution and gas phase provides a rationale for the observed reverse order for the CyclM(2+) + L reactions. Differences between gas phase and solution are found also when M(2+) = Cu(2+), but the tetraaza macrocycle is changed from, 12-ane to 14-ane to 15-ane. The strongest bonding in solution is with the 14-ane while in the gas phase it is with the 15-ane. Bond free energies, DeltaG(0)(1,0), for CyclCu(2+) with L = H(2)O, CH(3)OH, NH(3), C(2)H(5)OH, C(3)H(7)OH, (C(2)H(5))(2)O, and CH(3)COCH(3), are found to increase in the above order. The order and magnitude of the DeltaG(0)(1,0) values is close to DeltaG(0)(1,0) values observed with potassium K(+) and the same ligands. These results show that the cyclam in CyclCu(2+) leads to an extensive shielding of the +2 charge of Cu(2+). Ligands with gas phase basicities that are relatively high, lead to deprotonation of CyclM(2+). The deprotonation varies with the nature of M(2+) and provides information on the extent of electron transfer from the N atoms of the cyclam, to the M(2+) ions.  相似文献   

10.
Rounaghi G  Eshaghi Z  Ghiamati E 《Talanta》1997,44(2):275-282
The complexation reaction between a macrocyclic polyether, 18-crown-6 (18C6), and potassium ion was studied in methanol (MeOH)-acetonitrile (AN), dimethylformamide (DMF)-AN and propylecarbonate (PC)-DMF binary solvent systems at different temperatures using a conductometric method. It was found that the stability of the 1:1 complex formed between K(+) ion and this ligand increases with decreasing temperature. Standard enthalpies and standard entropies of the complex formation were obtained from the temperature dependence of the stability constant. In all cases negative DeltaH(o)(c) and DeltaS(o)(c) values characterize the formation of 18C6-K(+) complex. The results obtained show that the stability of the complex is governed by the solvent medium and the thermodynamic parameters DeltaH(o)(c), DeltaS(o)(c) and DeltaG(o)(c) are sensitive to the composition of the mixed solvents. In addition, it was found that the stability constant of the resulting 1:1 complex among various neat solvents used varies in the order PC > MeOH > AN > DMF.  相似文献   

11.
Sequential hydration energies of SO4(H2O)(n)2- were obtained from determinations of the equilibrium constants of the following reactions: SO4(H2O)(n)2- = SO4(H2O)(n-1)2- + H2O. The SO4(2-) ions were produced by electrospray and the equilibrium constants Kn,n-1 were determined with a reaction chamber attached to a mass spectrometer. Determinations of Kn,n-1 at different temperatures were used to obtain DeltaG0n,n-1, DeltaH0 n,n-1, and DeltaS0n,n-1 for n = 7 to 19. Interference of the charge separation reaction SO4(H2O)(n)2- = HSO4(H2O)(n-k)- + OH(H2O)(k-1)- at higher temperatures prevented determinations for n < 7. The DeltaS0n,n-1 values obtained are unusually low and this indicates very loose, disordered structures for the n > or = 7 hydrates. The DeltaH0n,n-1 values are compared with theoretical values DeltaEn,n-1, obtained by Wang, Nicholas, and Wang. Rate constant determinations of the dissociation reactions n,n - 1, obtained with the BIRD method by Wong and Williams, showed relatively lower rates for n = 6 and 12, which indicate that these hydrates are more stable. No discontinuities of the DeltaG0n,n-1 values indicating an unusually stable n = 12 hydrate were observed in the present work. Rate constants evaluated from the DeltaG0n,n-1 results also fail to indicate a lower rate for n = 12. An analysis of the conditions used in the two types of experiments indicates that the different results reflect the different energy distributions expected at the dissociation threshold. Higher internal energies prevail in the equilibrium measurements and allow the participation of more disordered transition states in the reaction.  相似文献   

12.
Bissell CL  Duke FR 《Talanta》1966,13(7):959-965
The fused salt electrochemical cell: Ag; AgCl, KC1; K(2)S(2),O(7),K(2)SO(4); O(2), Pt has been studied. Exact thermodynamic treatment of the chemical reaction, which occurs when current is drawn from the cell, is possible because K(2)S(2)O(7)(1) and AgCl(1) are immiscible, so that no junction potential occurs. Potentials observed at temperatures ranging from 700-800 degrees K for six different mixtures are reported. The Nernst equation is obeyed if it is assumed that the potassium disulphate-potassium sulphate system behaves ideally and that the silver chloride-potassium chloride system deviates slightly, negatively, from ideality. The thermodynamic functions, DeltaG degrees , DeltaH degrees and DeltaS degrees have been calculated from the corrected values of E degrees obtained. The free energy change follows the equation: DeltaG(700-800 degrees K) degrees = -71,680-29.50 T cal mole .  相似文献   

13.
Reported herein are the hydrogen atom transfer (HAT) reactions of two closely related dicationic iron tris(alpha-diimine) complexes. FeII(H2bip) (iron(II) tris[2,2'-bi-1,4,5,6-tetrahydropyrimidine]diperchlorate) and FeII(H2bim) (iron(II) tris[2,2'-bi-2-imidazoline]diperchlorate) both transfer H* to TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) to yield the hydroxylamine, TEMPO-H, and the respective deprotonated iron(III) species, FeIII(Hbip) or FeIII(Hbim). The ground-state thermodynamic parameters in MeCN were determined for both systems using both static and kinetic measurements. For FeII(H2bip) + TEMPO, DeltaG degrees = -0.3 +/- 0.2 kcal mol-1, DeltaH degrees = -9.4 +/- 0.6 kcal mol-1, and DeltaS degrees = -30 +/- 2 cal mol-1 K-1. For FeII(H2bim) + TEMPO, DeltaG degrees = 5.0 +/- 0.2 kcal mol-1, DeltaH degrees = -4.1 +/- 0.9 kcal mol-1, and DeltaS degrees = -30 +/- 3 cal mol-1 K-1. The large entropy changes for these reactions, |TDeltaS degrees | = 9 kcal mol-1 at 298 K, are exceptions to the traditional assumption that DeltaS degrees approximately 0 for simple HAT reactions. Various studies indicate that hydrogen bonding, solvent effects, ion pairing, and iron spin equilibria do not make major contributions to the observed DeltaS degrees HAT. Instead, this effect arises primarily from changes in vibrational entropy upon oxidation of the iron center. Measurement of the electron-transfer half-reaction entropy, |DeltaS degrees Fe(H2bim)/ET| = 29 +/- 3 cal mol-1 K-1, is consistent with a vibrational origin. This conclusion is supported by UHF/6-31G* calculations on the simplified reaction [FeII(H2N=CHCH=NH2)2(H2bim)]2+...ONH2 left arrow over right arrow [FeII(H2N=CHCH=NH2)2(Hbim)]2+...HONH2. The discovery that DeltaS degrees HAT can deviate significantly from zero has important implications on the study of HAT and proton-coupled electron-transfer (PCET) reactions. For instance, these results indicate that free energies, rather than enthalpies, should be used to estimate the driving force for HAT when transition-metal centers are involved.  相似文献   

14.
The isopropyl chloro complex Tp(Me2)NbCl(i-Pr)(PhC&tbd1;CMe) (2) [Tp(Me2) = hydrotris(3,5-dimethylpyrazolyl)borate] exhibits a beta-agostic structure in the crystal. The conformation of the alkyl group is such that the agostic methyl group lies in the Calpha-Nb-Cl plane and the nonagostic one, in a wedge formed by two pyrazole rings. As observed by solution NMR spectroscopy, restricted rotation about the Nb-C bond allows the observation of an equilibrium between this species, 2beta, and a minor alpha-agostic rotamer 2alpha. A putative third rotamer which would have the secondary hydrogen in the wedge is not observed. Similar behavior is observed for related Tp'NbCl(i-Pr)(R(2)C=CMe) [Tp' = Tp(Me2), R(2) = Me (3); Tp' = Tp(Me2,4Cl), R(2) = Ph (4)]. The two diastereomers of the sec-butyl complex Tp(Me2)NbCl(sec-Bu)(MeC=CMe) (5) have been separated. In the crystal, 5CR-AS has a beta-agostic methyl group with the ethyl group located in the wedge formed by two pyrazole rings. The same single beta-agostic species is observed in solution. The other diastereomer, 5AR-CS has a beta-agostic methylene group in the solid state, and the methyl group sits in the wedge. In solution, an equilibrium between this beta-agostic methylene complex 5AR-CSbeta and a minor alpha-agostic species 5AR-CSalpha, where the ethyl substituent of the sec-Bu group is located in the wedge between two pyrazole rings, is observed. NMR techniques have provided thermodynamic parameters for these equilibria (K = 2beta/2alpha = 4.0 +/- 0.1 at 193 K, DeltaG(o)(193) = -2.2 +/- 0.1, DeltaH(o) = -7.4 +/- 0.1 kJ mol(-)(1), and DeltaS(o) = -27 +/- 1 J K(-)(1) mol(-)(1)), as well as kinetic parameters for the rotation about the Nb-C bond (at 193 K, DeltaG(2)= 47.5 +/- 2.5, DeltaH= 58.8 +/- 2.5 kJ mol(-)(1), and DeltaS = 59.0 +/- 10 J K(-)(1) mol(-)(1)). Upon selective deuteration of the beta-methyl protons in Tp(Me2)NbCl[CH(CD(3))(2)](PhC=CMe) (2-d(6)), an expected isotope effect that displaces the equilibrium toward the alpha-agostic rotamer is observed (K = 2-d(6)beta/2-d(6)alpha = 3.1 +/- 0.1 at 193 K, DeltaG(o)(193) = -1.8 +/- 0.1, DeltaH(o) = -8.3 +/- 0.4 kJ mol(-)(1) and DeltaS(o)= -34 +/- 2 J K(-)(1) mol(-)(1)). The anomalous values for DeltaH(o) and DeltaS(o) are discussed. Hybrid quantum mechanics/molecular mechanics calculations (IMOMM (B3LYP:MM3)) on the realistic model Tp(Me2)NbCl(i-Pr)(HC=CMe) have reproduced the energy differences between the alpha- and beta-agostic species with remarkable accuracy. Similar calculations show that Tp(Me2)NbCl(CH(2)Me)(HC=CMe) is alpha-agostic only and that Tp(5)(-)(Me)NbCl(CH(2)Me)(HC=CMe), which has no methyl groups at the 3-positions of the pyrazole rings, is beta-agostic only. Analysis and discussion of the computational and experimental data indicate that the unique behavior observed for the secondary alkyl complexes stems from competition between electronic effects favoring a beta-agostic structure and steric effects directing a bulky substituent in the wedge between two pyrazole rings of Tp(Me2). All of the secondary alkyl complexes thermally rearrange to the corresponding linear alkyl complexes via a first-order reaction.  相似文献   

15.
Four new azo ligands, L1 and HL2-4, of sulfa drugs have been prepared and characterized. [MX(2)(L1)(H(2)O)(m)].nH(2)O; [(MX(2))(2)(HL2 or HL3)(H(2)O)(m)].nH(2)O and [M(2)X(3)(L4)(H(2)O)].nH(2)O; M=Co(II), Ni(II) and Cu(II) (X=Cl) and Zn(II) (X=AcO); m=0-4 and n=0-3, complexes were prepared. Elemental and thermal analyses (TGA and DTA), IR, solid reflectance spectra, magnetic moment and molar conductance measurements have accomplished characterization of the complexes. The IR data reveal that HL1 and HL2-3 ligands behave as a bidentate neutral ligands while HL4 ligand behaves as a bidentate monoionic ligand. They coordinated to the metal ions via the carbonyl O, enolic sulfonamide S(O)OH, pyrazole or thiazole N and azo N groups. The molar conductance data reveal that the chelates are non-electrolytes. From the solid reflectance spectra and magnetic moment data, the complexes were found to have octahedral, tetrahedral and square planar geometrical structures. The thermal behaviour of these chelates shows that the water molecules (hydrated and coordinated) and the anions are removed in a successive two steps followed immediately by decomposition of the ligand in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves applying Coats-Redfern method.  相似文献   

16.
The charge transfer complex (CT-complex) between oxatomide drug and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) was studied spectrophotometrically in 10 solvents at different temperatures. The donor oxatomide is found to form stable 1:1 stoichiometric complex with DDQ and the stoichiometry was unaffected by change in polarity of the solvent studied. The DeltaH degrees, DeltaS degrees and DeltaG degrees values are all negative, so the studied complex is reasonably stable and exothermic in nature. The ionization potential of the drug was determined using the CT-absorption bands of the complex in all the solvents. The dissociation energy of the charge transfer excited state for the CT-complex in different solvents was also determined and is found to be constant. The spectroscopic and thermodynamic properties were observed to be sensitive to the nature of the solvent.  相似文献   

17.
The energetics of micelle formation of three single-chain cationic surfactants bearing single (h = 1), double (h = 2), and triple (h = 3) trimethylammonium [(+)N(CH(3))(3)] headgroups have been investigated by microcalorimetry. The results were compared with the microcalorimetric data obtained from well-known cationic surfactant, cetyl trimethylammonium bromide (CTAB), bearing a single chain and single headgroup. The critical micellar concentrations (cmc's) and the degrees of counterion dissociation (alpha) of micelles of these surfactants were also determined by conductometry. The cmc and the alpha values increased with the increase in the number of headgroups of the surfactant. The relationship between the cmc of the surfactant in solution and its free energy of micellization (DeltaG(m)) was derived for each surfactant. Exothermic enthalpies of micellization (DeltaH(m)) and positive entropies of micellization (DeltaS(m)) were observed for all the surfactants. Negative DeltaH(m) values increased from CTAB to h = 1 to h = 2 and decreased for h = 3 whereas DeltaS(m) values decreased with increase in the number of headgroups. The DeltaG(m) values progressively became less negative with the increase in the number of headgroups. This implies that micelle formation becomes progressively less favorable as more headgroups are incorporated in the surfactant. From the steady-state fluorescence measurements using pyrene as a probe, the micropolarities sensed by the probe inside various micelles were determined. These studies suggest that the micelles are more hydrated with multiheaded surfactants and the micropolarity of micelles increases with the increase in the number of headgroups.  相似文献   

18.
The adsorption of hexametaphosphate ion, an important deflocculant used in the ceramic industry, from aqueous solutions onto kaolinite has been studied at different temperatures. The adsorption isotherm follows the Langmuir model: the thermodynamic parameters DeltaG(ads)(0), DeltaH(ads)(0), and DeltaS(ads)(0) were calculated and found to be consistent with an interaction model involving the formation of an inner-sphere complex between HMP and aluminol groups. Also, the dependence of the adsorption behavior on the kaolinite volume fraction has been studied and discussed in term of association processes between the clay particles.  相似文献   

19.
Azab HA 《Talanta》1992,39(8):913-917
The secondary dissociation constants of o-phthalic and phosphoric acids have been determined in 50% w/w dimethyl sulphoxide-water from reversible emf measurements of the cell of the type: Pt, H(2) (1 atm), M(2)A (m), MHA (m), MCl, AgCl; Ag at different temperatures (288.15-308.15 K) and at different ionic strengths. To minimize the unsteadiness in potential measurements palladium-coated platinum electrodes have been used. The large set of such emf values has been analysed in terms of a multi-linear regression method recommended in recent IUPAC documents. The thermodynamic values DeltaG degrees , DeltaH degrees , DeltaS degrees , for the respective equilibria were estimated. The possibility of using these acids as a basis for some buffer solutions in 50% dimethyl sulphoxide (Me(2)SO)-water mixture is discussed.  相似文献   

20.
The surface characterization of MgY and NH(4)Y zeolites was performed using inverse gas chromatography (IGC). The adsorption thermodynamic parameters (the standard enthalpy (DeltaH degrees ), standard entropy change (DeltaS degrees ), and free energy change of adsorption (DeltaG degrees ), the dispersive component of the surface free energies (gamma(S)(d)), and the acid-base character of the surface of MgY and NH(4)Y zeolites were estimated using the retention time of different non-polar and polar probes at infinite dilution region. The specific free energy of adsorption (DeltaG(sp)), the specific enthalpy of adsorption (DeltaH(sp)), and the specific entropy of adsorption (DeltaS(sp)) of polar probes on MgY and NH(4)Y zeolites were determined. The values of the DeltaH(sp) were correlated with both the donor and acceptor numbers of the probes to quantify the acidic K(A) and the basic K(D) parameters of the zeolite surfaces. The values obtained for the K(A) and K(D) parameters indicated a basic character for the surface of MgY and NH(4)Y zeolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号