首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kanický V  Otruba V  Mermet JM 《Talanta》1999,48(4):859-866
The limits of detection, precision and matrix effects in the inductively coupled plasma spectrometry of platinum group metals (PGMs) and gold were measured and evaluated for four ICP-AES and one ICP-MS instrument. The sample matrix was a cationic surfactant used for the PGMs and gold preconcentration on a modified silica gel (C18). A sorption of ion associates of PGMs and gold chlorocomplexes with the cation of onium salt N(1-carbaethoxypentadecyl)-trimethyl ammonium bromide was considered. The calibration curves, limits of detection and matrix effects were evaluated in the presence of 0.003 mol dm(-3) of onium salt (1.3 mg cm(-3)) and 0.1 mol dm(-3) HCl. The values of limits of detection (3 sigma(bl)) of PGMs for all axial ICP instruments were mostly below 10 ng cm(-3). Lateral observation on dual view ICP instrument yielded only 3 times higher detection limits in comparison to the axial mode of the same spectrometer and the detection limits for ICP-MS instrument were on the levels of units or tens of pg cm(-3). These limits of detection did not significantly differ from values obtained with pure solutions. Matrix effects in the presence of onium salt did not exceed 12% depression in the analytical signals. Besides the coefficients of correlation, the uncertainties on centroids of concentrations were calculated for calibration graphs obtained by linear regression.  相似文献   

2.
An ion-exchange procedure is proposed for determination of Pt and Pd in environmental samples, using a Dowex 1-X10 anion-exchange resin. Pt and Pd were separated from the matrix elements in the sample by selective retention on the column as anionic chloro complexes and subsequent elution by circulated thiourea at 60 °C. The eluent, containing Pt and Pd was analyzed by inductively coupled plasma (ICP) atomic emission spectrometry (AES). Average recoveries of 98% and detection limit of 15 ng/g for both metals were achieved. Analysis of Pt and Pd concentrations in road dust, sampled from several sites in Germany was performed. The comparison of the obtained data with the concentrations of Pt and Pd in the same samples, determined by ICP-MS showed a very good agreement.  相似文献   

3.
The interferences from Cd, Cu, Hf, Pb, Sr, Zn, Zr and Y on the inductively coupled plasma quadrupole mass spectrometry (ICP-MS) determination of Pt, Pd, Rh, Ru and Ir in geological (Pt-ore SARM-7, abundance range for platinum metals 0.07-3.74 μg/g) and environmental samples (sediment JSd-2 abundance range for Pt and Pd 0.0167-0.021 μg/g; road dust and plant sample) are evaluated using model solutions, real samples and comparison to inductively coupled plasma atomic emission spectrometry (ICP-AES) results. Pt, Rh, Ru and Ir can be determined usually after introduction of corrections for the interference in all investigated materials though in sediments the direct determination of Pt might be a problem depending on the actual Hf concentrations. The direct determination of Pd (after microwave-assisted acid digestion) is possible in ores using all investigated isotopes (, , ), in plants using and correction for the interferences of Zr, Mo and Cd, and not possible in sediments and road dust. Therefore, we developed a procedure for isolation of Pd using its diethyl-dithio-carabamate (DDTC) complex. The detection limits for Pt, Pd and Ir are 0.015 ng/g, and for Ru and Rh 0.03 ng/g.  相似文献   

4.
The analytical performance of cold vapor atomic absorption spectrometry (CV AAS), graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS) for mercury determination have been investigated with the use of two reference materials SRM 2710 Montana I Soil and BCR-144R (sewage sludge from domestic origin). The digestion conditions and their influence on determination of mercury have been studied. Samples were decomposed by microwave digestion in closed vessels with the use of HCl alone or mixture of HCl+HNO3+HF. The digestion solutions were analyzed by CV AAS using NaBH4 as a reducing agent, by GF AAS with Pd or mixture of Pd/Rh as modifiers and by ICP-MS with Rh as internal standard. In the case of CV AAS, results were not dependent on digestion conditions. In the case of GF AAS and ICP-MS, results depended significantly on digestion conditions; in both cases, the use of the mixture of acids as defined above suppressed the signal of mercury. Therefore, in those cases, the microwave digestion with HCl is recommended. Detection limits of 0.003, 0.01 and 0.2 μg g−1 were achieved by ICP-MS, CV AAS and GF AAS, respectively.  相似文献   

5.
Electrothermal vaporization (ETV) inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) with polyvinylidene fluoride (PVDF) as chemical modifier are critically compared for the determination of refractory elements in coal fly ash and airborne particulates. The atmospheric particulates that collected on a PVDF filter were introduced into the graphite furnace in the form of a slurry by dissolving the filter in dimethylformamide, and the dissolved filter PVDF, along with additional added PVDF powder, was used as a chemical modifier for subsequent ETV-ICP-OES and ETV-ICP-MS determination. The vaporization behaviors of analytes (Ti, Zr, V, Mo, Cr, La) in ETV-ICP-OES/MS were studied in detail, and the optimal ETV operating parameters were obtained. Under the optimized operating conditions, the detection limits of target elements were 0.08-2.7 ng m(-3) for ETV-ICP-OES and 0.5-50 pg m(-3) for ETV-ICP-MS, respectively, with analytical precisions of 3.5-7.3% for ETV-ICP-OES and 3.9-9.6% for ETV-ICP-MS, respectively. The tolerable amounts of matrix elements for ETV-ICP-OES are higher than for ETV-ICP-MS. Both ETV-ICP-OES and ETV-ICP-MS were used to directly determine the trace refractory elements in coal fly ash and airborne particulates and the analytical results are comparable.  相似文献   

6.
Cai B  Hu B  Xiong H  Liao Z  Mao L  Jiang Z 《Talanta》2001,55(1):85-91
A sensitive and rapid method for the determination of lanthanum, europium and ytterbium by inductively coupled plasma atomic emission spectrometry (ICP-AES) after solid-liquid extraction with microcrystalline naphthalene was developed. Analytes could be quantitatively adsorbed on tribromoarsenazo-cetylpyridinium bromide-naphthalene (TBA-CPB-naphthalene) packed in a column and determined by ICP-AES after desorption with 3 moll(-1) HCl. The effect of various experimental parameters, such as pH, reagent amounts, naphthalene concentrations and diverse ions, on the determination of interesting elements were investigated in detail. Under the optimized experimental conditions, the detection limits of this method for La(3+), Eu(3+) and Yb(3+) were 1.3-8.6 ngml(-1), and the relative standard deviations obtained for nine replicate determinations at a concentration of 0.5 mugml(-1) were 1.4-2.2%. The proposed method has been applied in the analysis of NIES CRM No. 8 vehicle exhaust particulates and GBW 07602 GSV-1 bush branches and leaves for La, Eu and Yb, and La in NIST SRM 1752 citrus leaves samples; the analytical results were in good agreement with reference values.  相似文献   

7.
电感耦合等离子体质谱技术最新进展   总被引:22,自引:0,他引:22  
李冰  杨红霞 《分析试验室》2003,22(1):94-100
对1998年以来电感耦合等离子体质谱技术(ICP-MS)的最新进展作一简要回顾。内容包括同位素比值分析、双聚焦扇形磁场高分辨ICP-MS、多接收器磁扇形等离子体质谱仪(MC-ICP-MS)、飞行时间等离子体质谱仪(ICP-TOF-MS)、“冷”等离子体及屏蔽炬技术以及动态碰撞/反应池技术等进展。  相似文献   

8.
Separation techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS) is reviewed. ICP-MS technique is described briefly. Coupling of the different separation techniques are described, together with the most common applications used for each technique that has been described in the literature. An overview for the future of separation techniques coupled to ICP-MS with regard to elemental speciation is discussed.  相似文献   

9.
电感耦合等离子体质谱法(ICP-MS)最新应用进展   总被引:9,自引:0,他引:9  
本文归纳了2008年以来电感耦合等离子体质谱法(ICP-MS)的最新应用进展,并主要阐述了近年来ICP-MS在地质科学、生物与医学、食品安全、农业生产、材料科学、冶金工业、环境分析中的应用。从样品处理,进样技术,内标元素的选择等多方面综述了ICP-MS在不同领域的应用。最后对ICP-MS的发展前景做了展望。  相似文献   

10.
A method was investigated for the determination of Sn in soil samples by KOH fusion followed by continuous hydride generation coupled with inductively coupled plasma mass spectrometry (HG-ICP-MS). Sample solutions in 3.0 M HCl were mixed in line with a solution of 2.4% NaBH4 and 0.25 M KOH to generate stannane gas. The mixture was delivered continuously to a gas/liquid separator and the stannane gas was introduced into a Perkin-Elmer Sciex Elan 6000 ICP-MS for concentration measurements. A method detection limit of 0.45 mg/kg was sufficient for Sn levels commonly found in soil samples. Sn concentrations as low as 2.5 mg/kg were reproducibly measured in soil samples. Sample results by HG-ICP-MS agreed within ±17% relative difference to results by instrumental neutron activation analysis (INAA) and within ±6% relative difference to results by KOH fusion followed by inductively coupled plasma optical emission spectroscopy (ICP-OES).  相似文献   

11.
The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles.In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best.An empirical equation is formulated for the estimation of the position of complete vaporization of a particle in the ICP. The equation takes into account the particle properties (diameter, density, boiling point, and molecular weight of the constituents of the particle) and the ICP operating parameters (ICP forward power and central channel gas flow rate). The proportional constant and exponents of the variables in the equation were solved using literature values of ICP operating conditions for single-particle inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) measurements of 6 kinds of particles in 12 studies. The calculated position is a useful guide for the selection of sampling depth or observation height for ICP-MS and ICP-AES measurements of single particles as well as discrete particles in a flow, such as laser-ablated materials and airborne particulates.  相似文献   

12.
Various approaches were evaluated in order to eliminate the spectral interferences noted when Pt and Pd has to be determined in environmental dust samples by ICP-MS. The chemical separation of Pt and Pd from the matrix components on ion-exchange resins was applied. The performance of cation-exchange resins (Dowex 50 WX-8, Dowex 50 WX-2, Dowex HCR-S, Varion KS, Cellex-P) for the separation of interfering ions was then examined. It was found that Dowex 50 WX-8 shows best performance. The effects of mass, mesh number of resin and concentration of Cl ions on matrix separation were also studied. Another approach was to use the anion-exchange sorbent Cellex-T, which allows almost total retention of both analytes followed by their elution with 0.1 mol L−1 thiourea in 1 mol L−1 HCl. This procedure however can be used only for platinum determination by ICP-MS. The accuracy of proposed procedures was confirmed by the analysis of certified material BCR-723, and then it was used for determination Pt and Pd in samples of road dust.  相似文献   

13.
The development and application of a calibration strategy for routine isotope ratio analysis by multi-collector inductively coupled plasma mass spectrometry (ICP-MS) is described and assessed. Internal standardization was used to account for the mass dependant determinate error (mass bias). The general solution for polynomial isotope ratio mass bias functions for use with internal standardization and isotope ratio measurements by multi-collector inductively coupled plasma mass spectrometry was derived. The resulting linear isotope ratio mass bias function was demonstrated to be mathematically consistent and experimentally realistic for the analysis of acidified aqueous solutions of analyte and internal standard elements (clean solutions) by multi-collector inductively coupled plasma mass spectrometry.  相似文献   

14.
Summary Methods for the determination of total Sn in environmental samples (waters, animal tissue, plant material, sediments and coal fly ash), by graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma mass spectrometry (ICP-MS) have been developed and evaluated.Noble metals (Ag, Au, Pd, Pt, Rh) under reducing conditions were studied as matrix modifiers for the determination of Sn by GFAAS. The maximum ashing temperature (1400°C), highest sensitivity and the best absolute detection limit (4 pg) were achieved when Pd was used in the presence of hydroxylamine hydrochloride. The achievable sensitivity depended strongly on the chemical composition of the matrix.Both GFAAS and ICP-MS appeared to be equally sensitive techniques for the direct determination of Sn in waters, though ICP-MS was a more convenient and sensitive technique for the determination of Sn in digested biological and geological materials.
Bestimmung von Zinn in Umweltproben durch Graphitrohr-AAS und ICP-MS
  相似文献   

15.
Elemental wine analysis is often required from a nutritional, toxicological, origin and authenticity point of view. Inductively coupled plasma based techniques are usually employed for this analysis because of their multi-elemental capabilities and good limits of detection. However, the accurate analysis of wine samples strongly depends on their matrix composition (i.e. salts, ethanol, organic acids) since they lead to both spectral and non-spectral interferences. To mitigate ethanol (up to 10% w/w) related matrix effects in inductively coupled plasma atomic emission spectrometry (ICP-AES), a microwave-based desolvation system (MWDS) can be successfully employed. This finding suggests that the MWDS could be employed for elemental wine analysis. The goal of this work is to evaluate the applicability of the MWDS for elemental wine analysis in ICP-AES and inductively coupled plasma mass spectrometry (ICP-MS). For the sake of comparison a conventional sample introduction system (i.e. pneumatic nebulizer attached to a spray chamber) was employed. Matrix effects, precision, accuracy and analysis throughput have been selected as comparison criteria. For ICP-AES measurements, wine samples can be directly analyzed without any sample treatment (i.e. sample dilution or digestion) using pure aqueous standards although internal standardization (IS) (i.e. Sc) is required. The behaviour of the MWDS operating with organic solutions in ICP-MS has been characterized for the first time. In this technique the MWDS has shown its efficiency to mitigate ethanol related matrix effects up to concentrations of 1% (w/w). Therefore, wine samples must be diluted to reduce the ethanol concentration up to this value. The results obtained have shown that the MWDS is a powerful device for the elemental analysis of wine samples in both ICP-AES and ICP-MS. In general, the MWDS has some attractive advantages for elemental wine analysis when compared to a conventional sample introduction system such as: (i) higher detection capabilities; (ii) lower ethanol matrix effects; and (iii) lower spectral interferences (i.e. ArC(+)) in ICP-MS.  相似文献   

16.
The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g− 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts.  相似文献   

17.
Hafnium at the very low level of 1–8 ppm (in relation to zirconium) was determined in zirconium sulfate solutions (originating from investigations of the separation of ca. 44 ppm Hf from zirconium by means of the ion exchange method) by using three independent methods: inductively coupled plasma mass spectrometry (ICP MS), neutron activation analysis (NAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results of NAA and ICP MS determinations were consistent with each other across the entire investigated range (the RSD of both methods did not exceed 38%). The results of ICP-AES determination were more diverse, particularly at less than 5 ppm Hf (RSD was significantly higher: 29–253%). The ion exchange method exploiting Diphonix® resin proved sufficient efficiency in Zr–Hf separation when the initial concentration ratio of the elements ([Zr]0/[Hf]0) ranged from 1200 to ca. 143,000.  相似文献   

18.
Inductively coupled plasma mass spectrometry coupled with ultrasonic slurry sampling electrothermal vaporization (USS-ETV-ICP-MS) has been applied to determine Pd, Rh, Pt and Au in 0.5% m/v slurries of several road dust samples. 2% m/v ammonium pyrrolidine dithiocarbamate (APDC) was used as the modifier to enhance the ion count. The influence of instrument operating conditions, slurry preparation and interferences on the ion count was reported. This method has been applied to the determination of Pd, Rh, Pt and Au in BCR 723 Road Dust and NIST SRM 2709 San Joaquin Soil reference materials and two road dust samples collected locally. The analysis results of the standard reference materials agreed with the certified values. Precision between sample replicates was better than 10% for all the determinations. The method detection limits estimated from standard addition curves were 0.9, 0.4, 0.6 and 0.4 ng g−1 for Pd, Rh, Pt and Au, respectively, in original dust samples.  相似文献   

19.
A method was developed for the determination of boron in titanium by inductively coupled plasma mass spectrometry (ICP-MS). A commercially available PTFE sample introduction system, leading to the desired low detection limits for boron, was used. The method is suitable for the determination of boron concentrations down to about 1 μg g?1 in the solid material. The influence of the internal standard on the precision was studied and beryllium was selected as the internal standard. For the titanium analysed (BCR reference material 090), the ICP-MS result agreed with those obtained using other techniques. Several bars of titanium reference material were supplied and a study of the homogeneity of boron in this material was made. Using analysis of variance on the results obtained for the different bars, the homogeneity of boron in the reference material could be estimated to be better than 2.1%.  相似文献   

20.
A flow injection system incorporating an alumina microcolumn has been coupled to inductively coupled plasma mass spectrometry (ICP-MS) for on-line preconcentration and determination of platinum (IV) in natural waters. Depending on the nature of the sample, a nominal preconcentration factor of up to 600 can be achieved by eluting with 50microl of 2 mol/l NH(4)OH. The limit of detection after a 5 min preconcentration time was 4 ngl(-1), with a relative standard deviation of 4% (100 ngl(-1) working solution). The proposed method was assessed for the determination of platinum (IV) in natural waters, motor car exhaust and some common analytical reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号