首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Y. Zhao 《Chromatographia》2000,51(3-4):231-234
Summary A new chelating reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) has been examined for high performance liquid chromatographic (HPLC) separations of cobalt (II), copper(II) and iron (II) or cobalt (II), nickel (II), iron (II), copper (II) and mercury (II) as metal chelates on a C18, 5μm column (250×4 mm i.d.) The chelates were eluted isocratically with methanol: acetonitrile: water containing sodium acetate and tetrabutylammonium bromide (TBA), and detected at 254 nm. A solvent extraction procedure was developed for simultaneous determination of the metals with detection limits within 0.02–2.5 μ g.mL−1. The method was applied to the determination of copper, cobalt and iron in natural waters.  相似文献   

2.
Rao BV  Gopinath R 《Talanta》1989,36(8):867-868
A simple potentiometric method is presented for successive determination of iron(III) and cobalt(II) by complexometric titration of the iron(III) with EDTA at pH 2 and 40 degrees , followed by redox titration of the cobalt(II) complex with 1,10-phenanthroline or 2,2'-bipyridyl at pH 4-5 and 40 degrees , with gold(III). There is no interference in either determination from common metal ions other than copper(II), which severely affects the cobalt determination but can be removed by electrolysis. The method has been successfully applied to determination of iron and cobalt in Kovar and Alnico magnet alloys.  相似文献   

3.
An optimized flow-injection manifold for the chemiluminescence determination of cobalt(II), copper(II), iron(II) and chromium(III) by their catalytic effect on the luminol reaction is described. Detection limits are 0.0006, 0.08, 0.3 and 0.1 ng ml?1, respectively. The suppression effect of several carboxylic acids on the emission intensity is discussed. A procedure for the separation of cobalt(II), copper(II) and iron(II) on a low-capacity, silica-based cation-exchange column, using 5 mM oxalic acid at pH 4.2 as the mobile phase and post-column detection via the luminol reaction, is also described. Detection limits for cobalt(II) and copper(II) are 0.01 and 5 ng ml?1, respectively.  相似文献   

4.
A convenient and efficient method for the estimation of cobalt(II) ions in the presence of other metal ions is described. Interference of metal ions such as iron(II), iron(III), nickel(II), manganese(II), and copper(II) have been investigated. Only iron(III) ions seriously affect this determination. Copper(II) and nickel(II) ions do not interfere if present in a molar-ratio less than 1:2 in the cobalt(II) ion solution. Cobalt(II)-nickel(II) and cobalt(II)-copper(II) binary mixtures can be efficiently analyzed at selective wavelengths.  相似文献   

5.
Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.  相似文献   

6.
Summary Complexes of furan and thiophene azo-oximes with iron(II), cobalt(III), nickel(II) and copper(II) have been prepared and characterised. Iron(II), cobalt(III) and copper(II) complexes are diamagnetic in the solid state. The diamagnetism of the copper(II) chelates is suggestive of antiferromagnetic interaction between two copper centres.1H n.m.r. spectral data suggest atrans-octahedral geometry for the tris-chelates of cobalt(III). Nickel(II) complexes are paramagnetic, in contrast to the diamagnetism of the analogous complexes of arylazooximes. The electronic spectra are suggestive of octahedral geometry for the iron(II), cobalt(III) and nickel(II) complexes, andD 4h -symmetry for copper(II). Infrared data indicate N-bonding of the oximino-group to the metal ions.  相似文献   

7.
Puri BK  Balani S 《Talanta》1995,42(3):337-344
Iron, cobalt and copper form coloured water soluble anionic complexes with disodium 1-nitroso-2-naphthol-3-6-disulphonate (nitroso R-salt). The anionic complex is retained quantitatively as a water insoluble neutral ion associated complex (M-nitroso R-TDBA) on tetradecyldimethylbenzylammonium iodide on naphthalene (TDBA(+)I(-)-naphthalene) packed column in the pH range of: Fe(III): 3.1-6.5, Co: 3.4-8.5 and Cu 5.9-8.0 when their solutions are passed individually over this adsorbent at a flow rate of 0.5-5.0 ml/min. The solid mass consisting of an ion associated metal complex along with naphthalene is dissolved out of the column with 5 ml dimethylformamide/chloroform and metals are determined spectrophotometrically. The absorbance is measured at 710 nm for iron, 425 nm for cobalt and 480 nm for copper. Beers law is obeyed in the concentration range 9.2-82 mug of iron, 425 nm for cobalt cobalt and 3.0-62 mug of copper in 5 ml of final DMF/CHCl(3) solution. The molar absorptivities are calculated to be Fe: 7.58 x 10(3), Co: 1.33 x 10(4) and Cu: 4.92 x 10(4)M(-1)cm(-1). Ten replicate determinations containing 25 mug of iron, 9.96 mug of cobalt and 3.17 mug of copper gave mean absorbances 0.677, 0.450 and 0.490 with relative standard deviations of 0.88, 0.98 and 0.92%, respectively. The interference of large number of metals and anions on the estimations of these metals has been studied. The optimized conditions so developed have been employed for the trace determination of these metals in standard alloys, waste water and fly ash samples.  相似文献   

8.
Mudasir  Yoshioka N  Inoue H 《Talanta》1997,44(7):1195-1202
A reversed phase ion-paired chromatographic method that can be used to determine trace amounts of iron (II,III), nickel (II) and copper (II) was developed and applied to the determination of iron (II) and iron (III) levels in natural water. The separation of these metal ions as their 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline) chelates on an Inertsil ODS column was investigated by using acetonitrile-water (80/20, v/v) containing 0.06 M perchloric acid as mobile phase and diode array spectrophotometric detection at 250-650 nm. Chromatographic parameters such as composition of mobile phase and concentration of perchloric acid in mobile phase were optimized. The calibration graphs of iron (II), nickel (II) and copper (II) ions were linear (r > 0.991) in the concentration range 0-0.5, 0-2.0 and 0-4.0 mug ml(-1), respectively. The detection limit of iron (II), nickel (II) and copper (II) were 2.67, 5.42 and 18.2 ng ml(-1) with relative standard deviation (n = 5) of 3.11, 5.81 and 7.16% at a concentration level of 10 ng ml(-1) for iron (II) and nickel (II) and 25 ng ml(-1) for copper (II), respectively. The proposed method was applied to the determination of iron(II) and iron(III) in tap water and sea water samples without any interference from other common metal ions.  相似文献   

9.
An RP-HPLC method for the separation and determination of aluminium(III), vanadium(V), iron(III), copper(II) and nickel(II) with CALKS (Chromazol KS) and PAR ([4-(2-pyridylazo)resorcinol]) chelating on a YWG-ODS column was developed. A mixture of methanol-tetrahydrofuran(THF)-water (60:5:35 v/v) containing 0.2 mol/L LiCl, 5 x 10(-5) mol/L CALKS, 5 x 10(-5) mol/L PAR and acetate buffer solution (pH 4.9) was selected as mobile phase. The method has high sensitivity, with the detection limits being 6 ng/mL for aluminium(III), 3.5 ng/mL for vanadium(V), 10.4 ng/mL for iron(III), 6.3 ng/mL for copper(II) and 8.7 ng/mL for nickel(II). It also has good selectivity, so that most foreign metal ions do not interfere under the optimum conditions. The method can be applied to the simultaneous determination of trace amounts of aluminium, vanadium, iron, copper and nickel in rice and flour samples.  相似文献   

10.
The reagent 3,8,13,18-tetramethyl-21H,23H-porphine-2,7,12,17-tetrapropionic acid or coproporphyrin-I (CPI) was used for the spectrophotometric determination of copper(II) and cobalt(II) in the presence of pyridine and imidazole catalysts. Optimum conditions were investigated and the methods were applied to the determination of parts per billion levels of copper(II) and cobalt(II). The Sandell sensitivities of the recommended procedures were 0.568 μm cm−2 and 0.464 μg cm−2 (for A = 0.001) for copper and cobalt, respectively. The relative standard deviations were 2.0% for copper and 1.0% for cobalt. The kinetics of the reaction of CPI with copper(II) and cobalt(II) in the presence of the catalysts and the influence of the temperature were studied, and their kinetic constants determined.The influence of light on the photodecomposition of CPI was also studied.  相似文献   

11.
The feasibility of using bis(delta2-2-imidazolinyl)-5,5'-dioxime (H2L) for the selective extraction of iron(III) from aqueous solutions was investigated by employing an solvent-extraction technique. The extraction of iron(III) from an aqueous nitrate solution in the presence of metal ions, such as cobalt(II), copper(II) and nickel(II), was carried out using H2L in binary and multicomponent mixtures. Iron(III) extraction has been studied as a function of the pH, equilibrium time and extractant concentration. From the extracted complex species in the organic phase, iron(III) was stripped with 2 M HNO3, and later determined using atomic-absorption spectrometry. The extraction was found to significantly depend on the aqueous solution pH. The extraction of iron(III) with H2L increases with the pH value, reaching a maximum in the zone of pH 2.0, remaining constant between 2 and 3.5 and subsequently decreasing. The quantitative extraction of iron(III) with 5 x 10(-30 M H2L in toluene is observed at pH 2.0. H2L was found to react with iron(III) to form ligand complex having a composition of 1:2 (Fe:H2L).  相似文献   

12.
The preparation, spectroscopic and magnetic properties are reported for complexes of iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) with th  相似文献   

13.
Lin J  Hobo T 《Talanta》1995,42(11):1619-1623
A novel chemiluminescent system, fluorescein-NH(2)OHOH(-), was developed for the determination of copper(II) in serum. A weak light emission arises from hydroxylamine in the presence of the organic reagent fluorescein in basic aqueous solution. Under the conditions of 1.2 x 10(-3) mol l(-1) NH(2)OH and 5 x 10(-3) mol l(-3) fluorescein, the light intensity is linearly dependent upon the concentration of copper(II) within the range 1-20 ppb. The relative standard deviation of the determination of copper(II) is 4.2% (n = 13) and the detection limit is 0.5 ppb. The system is highly selective for copper except in the presence of iron(II,III) and cobalt(II). In conjunction with potassium fluoride as masking agent, the method was successfully applied to the determination of microamounts of copper(II) in serum. A mechanistic study of the chemiluminescence reaction is also discussed.  相似文献   

14.
Khuhawar MY  Lanjwani SN 《Talanta》1995,42(12):1925-1929
The reagent bis(salicylaldehyde)tetramethylethylenediimine has been used for the determination of dioxouranium(VI), based on complexation in aqueous solution at pH 6, followed by extraction in chloroform and HPLC determination on a Hypersil ODS (3 μm) column. The complex was eluted with the ternary mixture methanol-acetonitrile-water (40:30:30, v/v/v), with UV detection at 260 nm. Oxovanadium(IV), iron(III), copper(II), cobalt(II), nickel(II) and palladium(II) were completely separated and did not interfere in the determination of uranium. The linear calibration range and detection limits have been obtained. The method has been applied to the determination of uranium together with copper, iron and nickel in mineral ore samples.  相似文献   

15.
A kinetic-catalytic spectrophotometric flow-injection method was developed for the rapid and sensitive determination of trace amounts of copper(II). The method is based on the catalytic effect of copper(II) on the redox reaction of cysteine with iron(III). Iron(II) produced by the catalytic reaction reacts with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) to form the iron(II)-TPTZ complex (lambda(max) = 593 nm). By measuring an absorbance of the complex, one could determine 0.05-8 ppb copper(II) with the relative standard deviations (n = 10) of 1.6%, 1.3%, and 0.8% for 0.5 ppb, 1 ppb, and 2 ppb copper(II), respectively. The limit of detection (S/N = 3) was 0.005 ppb. The sample throughput was 30 h(-1). The proposed method was successfully applied to the determination of copper in natural water and serum samples.  相似文献   

16.
The redox reaction between cobalt(II) and gold(III) chloride in the presence of 1.10-phenanthroline or 2,2'-bipyridine was studied, and a titration of the cobalt(II) complex with a gold(III) chloride solution was developed. A 4-fold amount of 1,10-phenanthroline or 2,2'-bipyridine was necessary for rapid quantitative reaction; the permissible pH range was 1.5–5. The oxidation of the cobalt(II) complex proceeds rapidly at 40–50°C, and a direct potentiometric titration was possible. The following maximum errors were obtained: 3.3% for 0.2–1.0 mg Co, 2.0% for 1–5 mg Co, and 0.70% for 10–40 mg Co. The following ions did not interfere: Ni(II), Zn(II), Pb(II), Cd(II), Mn(II), Fe(II), Cr(III), Al(III), Th(IV), Se(IV), Ti(IV), U(VI), Mo(VI), SO2-4 and PO3-4. Even small quantities of silver(I), copper(II), palladium(II), mercury(II)and iron(III) interfered. The method was applied to the determination of high cobalt contents in high-temperature nickel-base alloys.  相似文献   

17.
The analytical behavior of uramyldiacetic acid as potential chromogenic reagent for the spectrophotometric determination of trace materials is studied. As a result, interesting reactions with copper (II), uranium (VI), iron (II), iron (III), cobalt (II), cerium (II), and nickel (II) in neutral or acidic medium were observed. The absorption spectrum of UDA is established.  相似文献   

18.

A sensitive and simple separation-enrichment technique for the determination of trace amounts of Cu(II), Co(II), Cd(II), Fe(III) and Mn(II) was described. Metal ions were complexed with 1-nitroso-2-naphthol at pH 9. Following solid-phase extraction on Diaion HP-20 resin, metals were determined by flame atomic absorption spectrometry. The effect of the matrix ions were investigated. The recoveries of metal ions were greater than 95%. The detection limits of the analyte ions ( k = 3, N = 21) were varying 0.18 µg/l for Cd(II) to 0.44 µg/l for Fe(III). The method was applied to a stream sediment standard reference material (GBW7309), some ammonium salts and industrial fertilizer samples for the determination of copper, cobalt, cadmium, iron and manganese. The relative standard deviations (RSD) of the determinations for analyte ions at µg/g levels varied from 1 to 10%.  相似文献   

19.
The solubility and acid-base properties of benzoic acid N,N-dihexylhydrazide (BDHH) were studied. The extraction of copper(II), cobalt(II), nickel(II), zinc(II), iron(III), platinum(II), platinum(IV), chromium(III), chromium(VI), palladium(II), and molybdenum(VI) with this reagent was studied. It was shown that BDHH most efficiently extracts copper(II) from ammonia solutions and chromium(VI) from sulfuric acid solutions. In the extraction of copper(II), complexes with the [Cu(II)]: [BDHH] = 1: 1 and 1: 2 stoichiometries were found to form. The structure of the 1: 2 complex was suggested proceeding from its IR spectra. A copper(II) extraction isotherm was plotted.  相似文献   

20.
The interaction of diglycollic acid ligand with iron(III), cobalt(II), nickel(II) and copper(II) salts was investigated potentiometrically and spectrophotometrically. Only 1:1 complexes were formed in solution and solid. The pK's of the ligand and its complexes were computed. The electronic absorption spectra of the complexes depict the octahedral geometry. The infra-red spectra of the ligand and its complexes were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号