首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ji J  Deng C  Shen W  Zhang X 《Talanta》2006,69(4):894-899
In this work, portable gas chromatography-microflame ionization detection (portable GC-μFID) coupled to headspace solid-phase microextraction (HS-SPME) was developed for the field analysis of benzene, toluene, ethylbenzene and xylene (BTEX) in water samples. The HS-SPME parameters such as fiber coating, extraction times, stirring rate, the ratio of headspace volume to sample volume, and sodium chloride concentration were studied. A 65 μm poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) SPME fiber, 900 rpm, 3.0 ml of headspace (1.0 ml water sample in 4.0 ml vial), and 35% sodium chloride concentration (w/v) were respectively chosen for the best extraction response. An extraction time of 1.0 min was enough to extract BTEX in water samples. The relative standard deviation (R.S.D.) for the procedure varied from 5.4% to 8.3%. The method detection limits (MDLs) found were lower than 1.5 μg/l, which was enough sensitive to detect the BTEX in water samples. The optimized method was applied to the field analysis of BTEX in wastewater samples. These experiment results show that portable GC-μFID combined with HS-SPME is a rapid, simple and effective tool for field analysis of BTEX in water samples.  相似文献   

2.
A method of solventless extraction of volatile organic compounds from aqueous samples has been developed and validated. A new arrangement in which the internal volume of a needle capillary adsorption trap is completely filled with Porapak Q, as adsorbent material, and wet alumina, as a source of desorptive water vapor flow, is presented. The device has been used for head-space sampling of benzene, toluene, ethylbenzene, and xylenes (BTEX) from water samples and compared with solid-phase microextraction. Under the same sampling conditions the analytical characteristics of the device for the BTEX compounds are better than those of solid-phase microextraction. Limits of detection and quantification are below 0.5 μ g L−1.  相似文献   

3.
A portable optical fibre sensor has been developed for remote monitoring of benzene, toluene, ethylbenzene, p-xylene, m-xylene and o-xylene (BTEX). Firstly, the analyser was tested for calibration and its analytical performance for BTEX monitoring compared with a more classical analytical method, namely gas chromatography coupled to a flame ionization detector (GC-FID). The developed remote sensor shows several analytical advantages such as, high analytical sensitivity and accuracy, good linearity and stability of the analytical signal and short analytical time. Secondly, the optical fibre based sensor was applied to air monitoring for detection and quantification of BTEX in a confined industrial environment. The analytical signal measurement was performed by wireless at 20 m of distance from the local of analysis. Besides, the reported sensor showed a high degree of portability, compact design and high analytical performance for remote BTEX monitoring, in situ and in real-time.  相似文献   

4.
A mobile gas chromatographic device (Airmobtx HC 1000 monitor manufactured by Airmotec, Germany), originally designed for the analysis of benzene, toluene, ethylbenzene and xylenes (BTEX) in air, was connected to a flow cell for dynamic membrane extraction. Volatile organic compounds (VOCs) diffuse out of a water stream through a hollow fibre, are enriched onto sorption tubes integrated in the mobile device, and are then thermally desorbed and analysed by gas chromatography-flame ionisation detection. Battery operation of the device enables continuous on-site analysis of VOCs. Influences of the water flow-rate on system response and memory effects were investigated. The linear range of the method depends on the flow-rate of the water sample and did not exceed two orders of magnitude. The detection limits for trichloroethene, chlorobenzene and the BTEX compounds were found to be between 0.1 and 1.0 microg/l using a water flow-rate of 30 ml/min. Dynamic membrane extraction combined with the mobile gas chromatographic device was used for the on-site analysis of contaminated waters in the area of Leipzig.  相似文献   

5.
The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).  相似文献   

6.
《中国化学快报》2020,31(8):2125-2128
This work reports a superhydrophobic divinylbenzene polymer with hierarchical porous structure as sensing material to modify the quartz crystal microbalance (QCM) to detect benzene, toluene, ethylbenzene, and xylene (BTEX) vapor. Notably, sensing results toward toluene vapor in different relative humidities indicates that this superhydrophobic polymer has favorable toluene/water selective detection performance. Besides, the limit of detection toward toluene is lower than 1 ppm.  相似文献   

7.
Radiello® diffusive samplers filled with a thermally desorbable adsorbent (graphitised charcoal Carbograph 4) have been tested for the monitoring of BTEX. The sampling rates have been estimated under various controlled atmospheres in order to evaluate the effects of two factors (exposure time, concentration levels and their interaction) on the performances of the Radiello® sampler. Experiments have been carried out under various atmospheres in exposure chamber. A total of 174 Radiello® samplers were exposed while varying two conditions: exposure time (1, 3, 7 and 14 days) and BTEX concentrations (low, medium and high levels). The results show that the sampling rates of benzene and toluene decrease for exposure of 14 days and especially for high concentration levels: decrease of 30% at 10 μg m−3 for benzene and 14% at 30 μg m−3 for toluene.

To try to explain the variations of these sampling rates, the breakthrough volumes (VB) of BTEX on Carbograph 4 have been determined at different temperature and concentration conditions in order to evaluate the Langmuir parameters and their adsorption enthalpy (−ΔHads) using the Van’t Hoff equation. With regard to these adsorption characteristics, the dependence of sampling rates with concentration level and exposure time were analysed and discussed.  相似文献   


8.
Real-time monitoring of benzene, toluene, ethylbenzene, and xylenes (BTEX) in ambient air is essential for the early warning detection associated with the release of these hazardous chemicals and in estimating the potential exposure risks to humans and the environment. We have developed a tandem mass spectrometry (MS/MS) method for continuous real-time determination of ambient trace levels of BTEX. The technique is based on the sampling of air via an atmospheric pressure inlet directly into the atmospheric pressure chemical ionization (APCI) source. The method is linear over four orders of magnitude, with correlation coefficients greater than 0.996. Low limits of detection in the range 1–2 μg/m3 are achieved for BTEX. The reliability of the method was confirmed through the evaluation of quality parameters such as repeatability and reproducibility (relative standard deviation below 8% and 10%, respectively) and accuracy (over 95%). The applicability of this method to real-world samples was evaluated through measurements of BTEX levels in real ambient air samples and results were compared with a reference GC-FID method. This direct APCI-MS/MS method is suitable for real-time analysis of BTEX in ambient air during regulation surveys as well as for the monitoring of industrial processes or emergency situations.  相似文献   

9.
A new procedure for the passive sampling in air of benzene, toluene, ethylbenzene and xylene isomers (BTEX) is proposed. A low-density polyethylene layflat tube filled with a mixture of solid phases provided a high versatility tool for the sampling of volatile compounds from air. Several solid phases were assayed in order to increase the BTEX absorption in the sampler and a mixture of florisil and activated carbon provided the best results. Direct head-space-gas chromatography–mass spectrometry (HS-GC–MS) measurement of the whole deployed sampler was employed for a fast determination of BTEX. Absorption isotherms were used to develop simple mathematical models for the estimation of BTEX time-weighted average concentrations in air. The proposed samplers were used to determine BTEX in indoor air environments and results were compared with those found using two reference methodologies: triolein-containing semipermeable membrane devices (SPMDs) and diffusive Radiello samplers. In short, the developed sampling system and analytical strategy provides a versatile, easy and rapid atmospheric monitor (VERAM).  相似文献   

10.
A comparison is made between static headspace analysis and headspace solid-phase dynamic extraction (HS-SPDE) for the quantitative determination of trace level BTEX solvents (benzene, toluene, ethylbenzene and o-, m-, and p-xylene) in soft drinks. Two non-polar extraction phases were investigated for SPDE using an automated sampler with a gas-tight syringe equipped with a special needle coated on the inside with the extraction phase. Following adsorption onto the phase, the analytes were thermally desorbed directly into a GC-MS. The techniques were optimised and evaluated by analysis of spiked soft drink samples. The use of the SPDE device gave comparable results to the static headspace method, with lower detection limits for some compounds, and also offers advantages for applications where lower temperatures are preferred.  相似文献   

11.
Solid-phase microextraction (SPME) is combined with gas chromatography-ion trap mass spectrometry (GC-IT-MS) for the analysis of benzene, toluene, ethyl benzene and xylene isomers (BTEX) in water. SPME is a recent technique for extracting organics from an aqueous matrix into a stationary phase immobilized on a fused-silica fiber. The analytes are thermally desorbed directly in the injector of a gas chromatograph. The wide linear dynamic range (five orders of magnitude) and pg sensitivity of the ion trap mass spectrometer in its full scan mode is an ideal detector for identifying and quantifying the analytes extracted with an SPME device. The combined method SPME-GC-IT-MS, using fibers coated with a 100-microns polydimethylsiloxane coating, showed a limit of quantitation (LOQ) of 50 pg/ml benzene in water. This corresponds to 5 pg of benzene absorbed onto the fiber. The limit of detection (LOD) was 15 pg/ml benzene. For o-xylene spiked at 50 pg/ml in water 50 pg were absorbed by the fiber indicating an LOQ and LOD 10 times better than for benzene. The detection limits obtained exceed the requirements of both the United States Environmental Protection Agency method 524.2 and the Ontario Municipal/Industrial Strategy for Abatement program, which range from 30 to 80 pg/ml and 500 to 1100 pg/ml, respectively. The linearity of the method extended over five orders of magnitude. Relative standard deviation ranged from 2.7 to 5.2% for 15 ng/ml BTEX in water and from 5.5 to 7.5% for 50 pg/ml BTEX in water. SPME-GC-IT-MS was used to evaluate the contamination level in laboratory, potable and wastewater sources.  相似文献   

12.
A rapid determination of benzene, toluene, ethylbenzene and the three xylene isomers (BTEX), including a nearly baseline separation of the xylene isomers in environmental samples within 1 min has been carried out using low-pressure gas chromatography-ion trap mass spectrometry (LP-GC-IT-MS). In order to evaluate the different parameters which may influence the performance of LP-GC-IT-MS, different column and mass spectral parameters were varied. Comparing LP-GC-IT-MS with the conventional equivalent, we obtained excellent detection limits as well as a good RSD of 8-13% in ition to a much shorter analysis time. In order to evaluate LP-GC-IT-MS for use in environmental samples, we determined BTEX in air.  相似文献   

13.
A simple and fast method has been developed for the determination of benzene, toluene and the mixture of ethylbenzene and xylene isomers (BTEX) in soils. Samples were introduced in 10 mL standard glass vials of a headspace (HS) autosampler together with 150 μL of 2,6,10,14-tetramethylpentadecane, heated at 90 °C for 10 min and introduced in the mass spectrometer by using a transfer line heated at 250 °C as interface. The volatile fraction of samples was directly introduced into the source of the mass spectrometer which was scanned from m/z 75 to 110. A partial least squares (PLS) multivariate calibration approach based on a classical 33 calibration model was build with mixtures of benzene, toluene and o-xylene in 2,6,10,14-tetramethylpentadecane for BTEX determination. Results obtained for BTEX analysis by HS-MS in different types of soil samples were comparables to those obtained by the reference HS-GC-MS procedure. So, the developed procedure allowed a fast identification and prediction of BTEX present in the samples without a prior chromatographic separation.  相似文献   

14.
This paper describes a novel method for the measurement of the permeability of a non-porous poly(dimethylsiloxane) (PDMS) membrane by solid-phase microextraction (SPME). A mathematical model was derived to explain the permeation process and to deduce the equations for calculating the permeability. The effects of feed and permeate gas velocity, membrane module temperature, and humidity on the membrane permeabilities of acetone, benzene, toluene, ethylbenzene, and xylene (BTEX) have been investigated. Permeability measurements of acetone and BTEX through a PDMS membrane have been presented and compared with literature values. A fast, convenient, and calibration-free measurement of the permeability of a PDMS membrane has been demonstrated.  相似文献   

15.
Ion mobility spectrometry (IMS) has potential analytical applications in very diverse fields such as chemical, petrochemical, environmental, and, more recently, in drug, chemical warfare agent, and explosives detection. Commercially available IMS instruments are based on time-of-flight (TOF) mass spectrometry. IMS is inherently suitable for field operation as it uses relatively simple microfluidic devices and operates at atmospheric pressure. It is portable, highly sensitive with tunable selectivity, yet can be produced at relatively low cost. Key limitations of this analytical detection technique are low duty cycle, ion cluster formation, short linear dynamic range, and restriction to only positive or negative ion collection in a single analysis. Microelectromechanical system, radio frequency modulated IMS (MEMS RF-IMS), also known as differential mobility spectrometry, has recently been developed and commercialized. The technology is based on IMS, and MEMS RF-IMS offers substantially better performance. In this study, the strengths and limitations of the recently introduced differential mobility detector when used with gas chromatography in trace analyses are discussed and illustrated with applications of industrial significance.  相似文献   

16.
Triacetone triperoxide (TATP) is a high explosive synthesized from easily available reactants making it accessible for illicit uses. In this study, fast detection of TATP is achieved using a novel planar solid-phase microextraction (PSPME) as a preconcentration and sampling device for headspace analysis offering improved sensitivity and reduced sampling time over the conventional fiber-based solid-phase microextraction (SPME) when followed by ion mobility spectrometer (IMS) detection. Quantitation and comparison of the retention capabilities of PSPME as compared to the commercially available SPME were determined using TATP standards and analyzed using gas chromatography–mass spectrometry for SPME analysis and a commercial IMS with no instrumental modification for PSPME. Static and dynamic headspace extractions were used and compared for PSPME extractions, in which low milligram quantities of TATP were detected within 30 s of static mode sampling and less than 5 s in the dynamic mode sampling for PSPME–IMS.  相似文献   

17.
The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem. 2006, 78, 5994–6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds’ permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics.  相似文献   

18.
A simple procedure for the determination of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), ethyl butyl ether (EBE), tert-amyl methyl ether (TAME), benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using headspace (HS) solid-phase microextraction (HS-SPME) was developed. The analysis was carried out by gas chromatography (GC) equipped with flame ionization detector (FID) and 100% dimethylpolysiloxane fused capillary column. A 2 Plackett-Burman design for screening and a central composite design (CCD) for optimizing the significant variables were applied. Fiber type, extraction temperature, sodium chloride concentration, and headspace volume were the significant variables. A 65 microm poly(dimethylsiloxane)-divinylbenzene (PDMS-DVB) SPME fiber, 10 degrees C, 300 g/l, and 20 ml of headspace (in 40 ml vial) were respectively chosen for the best extraction response. An extraction time of 10 min was enough to extract the ethers and BTEX. The relative standard deviation (R.S.D.) for the procedure varied from 2.6 (benzene) to 8.5% (ethylbenzene). The method detection limits (MDLs) found were from 0.02 (toluene, ethylbenzene, and xylenes) to 1.1 microg/l (MTBE). The optimized method was applied to the analysis of the rivers, marinas and fishing harbors surface waters from Gipuzkoa (North Spain). Three sampling were done in 1 year from June 2002 to June 2003. Toluene was the most detected analyte (in 90% of the samples analyzed), with an average concentration of 0.56 microg/l. MTBE was the only dialkyl ether detected (in 15% of the samples) showing two high levels over 400 microg/l that were related to accidental fuel spill.  相似文献   

19.
An analytical methodology based on a field-effect transistor detector using carbon nanotubes (NTFET) coupled to a gas chromatograph has been developed for the speciation of the following aromatic compounds: benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene (BTEX). This methodology combines the proven separation capability of gas chromatography (GC) with the potential for detection of a NTFET. The developed analyzer shows a high and stable analytical response upon repeated analysis of BTEX during 4 weeks, with detection limit less than 4 μg/L. The GC–NTFET system also shows a great suitability for actual monitoring of indoor atmospheres and no significant difference was observed between the results obtained by the developed analyzer and a more classical analytical methodology, namely gas chromatography–flame ionization detection (GC–FID).  相似文献   

20.
A novel device, membrane extraction with a sorbent interface (MESI) coupled with a portable gas chromatograph (GC) system, has been developed. The main components of this system include a membrane module, a microtrap, and a control unit for the heater and cooler. The membrane module, as an on-line sample-introduction device for this system, can be manipulated in different configurations, allowing for the selective permeation of analytes across the membrane into the carrier/stripping gas. The analytes are trapped and concentrated onto a microtrap, which serves as an injector for gas chromatography separation. A concentration pulse of the trapped analytes is generated through direct electrical heating of the microtrap. The characteristics of this system have been explored, and its applicability and effectiveness have been demonstrated in field monitoring applications including the analysis of toluene in wastewater, Volatile organic compounds (VOCs) in laboratory air, and chloroform in swimming-pool water. This system is very promising, as it is a simple, fast, and portable tool for on-site process environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号