首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
This work presents a study of the thermal decomposition of commercial vegetable oils and of some of their thermal properties by termogravimetry (TG), derivative termogravimetry (DTG) and by differential thermal analysis (DTA). Canola, sunflower, corn, olive and soybean oils were studied. A simultaneous SDT 2960 TG/DTA from TA Instruments was used, with a heating rate of 10 K min-1 from 30 to 700°C. A flow of 100 mL min-1 of air as the purge gas was used in order to burnout the oils during analysis to estimate their heat of combustion. From the extrapolated decomposition onset temperatures obtained from TG curves, it can be seen that corn oil presents the highest thermal stability (306°C), followed by the sunflower one (304°C). Olive oil presents the lowest one (288°C). The heat of combustion of each oil was estimated from DTA curves, showing the highest value for the olive oil. Except for corn oil, which presents a significantly different thermal decomposition behavior than the other oils, a perfect linear correlation is observed, with negative slope, between the heat of combustion of an oil and its respective extrapolated onset temperature of decomposition in air. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
利用衰减全反射傅里叶红外光谱法对掺假橄榄油进行了快速鉴别研究。对掺入转基因大豆油、非转基因大豆油、花生油、玉米油、葵花籽油、调和油等的橄榄油采用160℃高温加热8h处理,通过观察样品加热前、后二阶导数光谱在988cm-1处特征吸收峰的吸光度变化,准确鉴别橄榄油是否掺假。该方法操作简便、前处理无需有机试剂,可作为市场筛查掺假橄榄油的快速鉴别方法。  相似文献   

3.
Phenolic compounds and antioxidant activity of olive leaf extracts   总被引:3,自引:0,他引:3  
The total phenolic content and antioxidant activities of olive leaf extracts were determined. Plant material was extracted with methanol and fractionated with solvents of increasing polarity, giving certain extracts. The qualitative changes in the composition of the extracts were determined after the storage of leaves for 22?h at 37°C, before the extraction. Total polyphenol contents in extracts were determined by the Folin-Ciocalteu procedure. They were also analysed by liquid chromatography-mass spectrometry. Their antioxidant activities were evaluated using the diphenyl picrylhydrazyl method and the β-carotene linoleate model assay. Moreover, the effects of different crude olive leaf extracts on the oxidative stability of sunflower oil at 40°C and sunflower oil-in-water emulsions (10% o/w) at 37°C, at a final concentration of crude extract 200?mg?kg(-1) oil, were tested and compared with butylated hydroxyl toluene.  相似文献   

4.
A procedure for determining triglycerides of vegetable oils by microcolumn reversed-phase HPLC with UV detection at 210 nm was developed. Acetonitrile and diethyl ether mixtures (10 : 4–6.5, by volume) were proposed as eluants. The procedure was applied to the identification of oils (linseed, corn, olive, sunflower, and pumpkin oils), to the detection of adulterated oils (using olive and sea-buckthorn oils as examples), and to the determination of the degree of the unsaturation of oils.  相似文献   

5.
A novel method for the UHPLC–MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337 → 154 showed LOD = 10.9 nM, average accuracy of 101% and precision ranging 2.5–4.0% RSD intra-day (2.7–4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils.  相似文献   

6.
This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.  相似文献   

7.
Fluorescence spectra measurement of olive oil and other vegetable oils   总被引:1,自引:0,他引:1  
Fluorescence spectra of some common vegetable oils, including olive oil, olive residue oil, refined olive oil, corn oil, soybean oil, sunflower oil, and cotton oil, were examined in their natural state, with a wavelength of 360 nm used as excitation radiation. All oils studied, except extra virgin olive oil, exhibited a strong fluorescence band at 430-450 nm. Extra virgin olive oil gave a different by interesting fluorescence spectrum, composed of 3 bands: one low intensity doublet at 440 and 455 nm, one strong at 525 nm, and one of medium intensity at 681 nm. The band at 681 nm was identified as the chlorophyll band. The band at 525 nm was at least partly derived from vitamin E. The low intensity doublet at 440 and 455 nm correlated with the absorption intensity at 232 and 270 nm of olive oil. The measurements of these fluorescence spectra were quick (about 5 min) and easy and could possibly be used for authentification of virgin olive oil.  相似文献   

8.
《Analytical letters》2012,45(12):2209-2220
A method of principal component analysis was employed to authenticate genuine olive oil based on Raman spectroscopy, which can reliably distinguish olive oil from other types of oils and can also accurately identify the level of adulteration in a set of olive oil samples contaminated with 5% or more of other types of oils, such as soybean oil, rapeseed oil, sunflower seed oil, and corn oil. The method is very easy, effective, time-saving, and requires minimal sample preparation. Therefore, the method is a promising technique for the rapid authentication application of olive oil.

[Supplementary materials are available for this article. Go to the publisher's online edition of Analytical Letters for the following free supplemental resource(s): Additional text and table]  相似文献   

9.
An analysis of olive, pressed sunflower, extracted sunflower, extracted soybean, deodorized sunflower, deodorized rapeseed, and deodorized corn vegetable oils has been performed on an FlavourSpec® ionmobility spectrometer. Twenty-four compounds were found in the spectra of the gas phase above samples of vegetable oils and 12 of them were identified. Ion-mobility spectrometry combined with polycapillary chromatography columns made possible distinguishing oils from different plants, as well as pressed and extracted sunflower oil by the volatile components found in the gas phase above the oil.  相似文献   

10.
蒋万枫  张宁  张凤艳  杨钊 《色谱》2017,35(7):760-765
建立了测定橄榄调和油中橄榄油含量的顶空气相色谱-质谱分析方法。对样品量、加热温度、加热时间、进样量、进样模式、色谱柱进行了优化。通过化学计量学方法发现了橄榄油的特征化合物。取1.0 g样品放置于20 m L顶空瓶中,在180℃加热振摇2 700 s,取1.0 m L顶空气体进样,通过HP-88色谱柱分离和质谱检测。结果表明,方法的线性范围为0~100%(橄榄油含量),线性相关系数(r2)大于0.995,检出限为1.26%~2.13%,模拟橄榄调和油中橄榄油含量测定的偏差为-0.65%~1.02%,相对偏差为-1.3%~6.8%,相对标准偏差为1.18%~4.26%(n=6)。该方法不使用任何溶剂,操作简单、快速、环保,灵敏度和准确度高,适用于橄榄调和油中橄榄油含量的测定。  相似文献   

11.
Adulteration of extra virgin olive oil with sunflower oil is a major issue for the olive oil industry. In this paper, the potential of total synchronous fluorescence (TSyF) spectra to differentiate virgin olive oil from sunflower oil and synchronous fluorescence (SyF) spectra combined with multivariate analysis to assess the adulteration of virgin olive oil are demonstrated. TSyF spectra were acquired by varying the excitation wavelength in the region 270–720 nm and the wavelength interval (Δλ) in the region from 20 to 120 nm. TSyF contour plots for sunflower, in contrast to virgin olive oil, show a fluorescence region in the excitation wavelength range 325–385 nm. Fifteen different virgin olive oil samples were adulterated with sunflower oil at varying levels (0.5–95%) resulting in one hundred and thirty six mixtures. The partial least-squares regression model was used for quantification of the adulteration using wavelength intervals of 20 and 80 nm. This technique is useful for detection of sunflower oil in virgin olive oil at levels down to 3.4% (w/v) in just two and a half minutes using an 80-nm wavelength interval.  相似文献   

12.
Antioxidants are used to prevent oxidative changes and flavor development in oils and fats. The aim of this study is to evaluate the antioxidant effect of adding thyme powder added on sunflower oil during frying at different temperature intervals (250 ± 1 °C). Thyme powders were added to sunflower oil at ratio of 0.5%, 1% and 1.5%, and the frying period were estimated for 2 h at 250 ± 1 °C. The oil samples collected intervals were at 0.5, 1, 1.5, and 2 h and the potatoes were fried in each time. The antioxidant activity of thyme powders was 93.05 %, estimated using DPPH root scanning methods. The values of acid, peroxide and, the saponification, ​​and the fatty acid content were considered criteria for evaluating the effectiveness of thyme powder in improving the quality of sunflower oil during frying. Our results confirmed that the adding thyme powder to sunflower oil improved their chemical properties, leading to decrease the acid, peroxide, and saponification values, and unsaturated fatty acids increased. Examination of serum function of rats fed with fried potatoes in sunflower oil-added thyme powder decreased total cholesterol, low-density lipoprotein, and triglycerides, while high-density lipoprotein increased. Moreover the results confirmed that thyme powder reduces liver and kidney functions compared to the control sample. Therefore, adding thyme to sunflower oil retards oxidative decomposition and improves its quality as a natural antioxidant to prolong oil stability.  相似文献   

13.
Vegetable oils (VOs), being our major dietary fat source, play a vital role in nourishment. Different VOs have highly contrasting fatty acid (FA) profiles and hence possess varying levels of health protectiveness. Consumption of a single VO cannot meet the recommended allowances of various FA either from saturated FA (SFA), monounsaturated FA (MUFA), polyunsaturated FA (PUFA), Ω-3 PUFAs, and medium-chain triglycerides (MCTs). Coconut oil (CO), flaxseed oil (FO), olive oil (OO), and sunflower oil (SFO) are among the top listed contrast VOs that are highly appreciated based on their rich contents of SFAs, Ω-3 PUFAs, MUFAs, and Ω-6 PUFA, respectively. Besides being protective against various disease biomarkers, these contrasting VOs are still inappropriate when consumed alone in 100% of daily fat recommendations. This review compiles the available data on blending of such contrasting VOs into single tailored blended oil (BO) with suitable FA composition to meet the recommended levels of SFA, MUFA, PUFA, MCTs, and Ω-3 to Ω-6 PUFA ratios which could ultimately serve as a cost-effective dietary intervention towards the health protectiveness and improvement of the whole population in general. The blending of any two or more VOs from CO, FO, OO, and SFO in the form of binary, ternary, or another type of blending was found to be very conclusive towards balancing FA composition; enhancing physiochemical and stability properties; and promising the therapeutic protectiveness of the resultant BOs.  相似文献   

14.
The fatty acid profiles of frequently consumed oils and crops cultivated in Turkey were investigated in regard to omega fatty acids. Analyses were carried out on commercially sold oils, sunflower, olive, and fish oils, and oils extracted from fatty seeds of hazelnut, walnut, olive, sunflower, poppy, sesame, and pumpkin, and butter produced in Turkey. Hazelnut and olive oils were found to be rich in omega-9 (oleic acid 18:1), walnut, poppy seed, sesame, and pumpkin seed were rich in omega-6 (linoleic acid 18:2), and butter was rich in short chain fatty acids and omega-9. Fish oil, from mackerel, was the richest in omega-3 fatty acids and fatty acid diversity. There were some alterations between commercially sold oils and oils extracted from seeds in regard to fatty acid percentages and variety.  相似文献   

15.
A new procedure has been developed for the classification and quantification of the adulteration of pure olive oil by soya oil, sun flower oil, corn oil, walnut oil and hazelnut oil. The study was based on a chemometric analysis of the near-infrared (NIR) spectra of olive-oil mixtures containing different adulterants. The adulteration of olive oil was carefully carried out gravimetrically in a 4 mm quartz cuvette, starting with pure olive oil in the cuvette first. NIR spectra of the 525 adulterated mixtures were measured in the region of 12,000-4000 cm(-1). The spectra were subjected batch wise to multiplicative signal correction (MSC) before calculating the principal component (PCA) models. The MSC-corrected data were subjected to Savitzky-Golay smoothing and a mean normalization procedure before developing partial least-squares calibration (PLS) models. The results revealed that the models predicted the adulterants, corn oil, sun flower oil, soya oil, walnut oil and hazelnut oil involved in olive oil with error limits +/-0.57, +/-1.32, +/-0.96, +/-0.56 and +/-0.57% weight/weight, respectively. Furthermore, the PCA developed models were able to classify unknown adulterated olive oil mixtures with almost 100% certainty. Quantification of the adulterants was carried out using their respective PLS models within the same error limits as mentioned above.  相似文献   

16.
Two mathematical methods to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO), refined olive-pomace oil (ROPO), sunflower (SO) or corn (CO) oils have been described here. These methods are linear and non linear models based on chaotic parameters (CPs, Lyapunov exponent, autocorrelation coefficients and two fractal dimensions) which were calculated from UV-vis scans (190-900 nm wavelength) of 817 adulterated EVOO samples. By an external validation process, linear and non linear integrated CPs/UV-vis models estimate concentrations of adulterant agents with a mean correlation coefficient (estimated versus real concentration of cheaper oil) greater than 0.80 and 0.97 and a mean square error less than 1% and 0.007%, respectively. In the light of the results shown in this paper, the adulteration of EVOO with ROO, ROPO, SO and CO can be suitably detected by only one chaotic parameter integrated on a radial basis network model.  相似文献   

17.
The in-vitro antioxidant activity of natural (essential oils, vitamin E) or synthetic substances ( tert-butyl hydroxy anisole (BHA), Trolox) has been evaluated by monitoring volatile carbonyl compounds released in model lipid systems subjected to peroxidation. The procedure employed methodology previously developed for the determination of carbonyl compounds as their pentafluorophenylhydrazine derivatives which were quantified, with high sensitivity, by means of capillary gas chromatography with electron-capture detection. Linoleic acid and sunflower oil were used as model lipid systems. Lipid peroxidation was induced in linoleic acid by the Fe2+ ion (1 mmol L-1, 37 degrees C, 12 h) and in sunflower oil by heating in the presence of O2 (220 degrees C, 2 h). The change in hexanal (the main lipoxidation product) concentration found in the lipid matrix subjected to oxidation with and without the substance being tested was used to calculate the antioxidant protection effect. These procedures were employed to evaluate the antioxidant activity of the essential oils of cilantro ( Coriander sativum L.), fennel ( Foeniculum vulgare Mill.), rosemary ( Rosmarinus officinalis L.), "salvia negra" ( Lepechinia schiedeana), and oregano ( Origanum vulgare L.), and the well-known antioxidants BHA, vitamin E, and Trolox, its water-soluble analog. In the sunflower oil system, the essential oils had a stronger protective effect against lipid peroxidation than BHA, vitamin E, and Trolox within the range of concentrations examined (1-20 g L-1). The highest protecting effect, corresponding to a 90% drop in hexanal release, was observed for cilantro oil at 10 g L-1.  相似文献   

18.
Direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis of solutions of edible fats/oils yielded spectra useful for their rapid differentiation and classification. Results also reflected the individual fatty acid components and their degree of unsaturation. After dissolution in hexane, MALDI-MS analysis revealed spectra showing characteristic triacylglycerols (TAGs), the main fat/oil components, as sodium adduct ions. The Euclidean distances calculated using the mass and intensity values for 20 TAGs were used to evaluate and compare spectra. With cluster analysis, animal fats grouped together differently than vegetable oils and the individual oils grouped together by type. The ion abundances for the individual TAGs and their presumed compositions were used to approximate the overall fatty acid composition of canola, soybean, corn, olive and peanut oil, as well as lard. Using this approach the calculated fatty acid compositions and degree of unsaturation generally fell within about 4% of literature values. When the degree of saturation was compared with values calculated from the package labeling the differences were about 7%.  相似文献   

19.
Individual triglyceride (TG) species of olive oil and several seed oils (corn, cottonseed, palm, peanut, soybean, and sunflower) are baseline separated on a WCOT TAP CB fused-silica capillary column by capillary gas chromatography (CGC) with a flame-ionization detector (FID) and either cold on-column or split injection. An adulteration of olive oil with a low content (< 5%) of these seed oils (except peanut oil) can be verified by the detection of the increasing levels of trilinolein or tripalmitin in olive oil in which these TG species are normally absent or present at very low levels (< 0.5%). An adulteration with over 20% peanut oil can be detected by the increasing levels of palmitodilinolein. TG species that can be coeluted with trilinolein in the reversed-phase high-performance liquid chromatographic (RP-HPLC) mode are baseline separated by the CGC technique, and their structures are identified by selective ion monitoring mass spectrometry. The following comparisons--the CGC-FID and RP-HPLC methods for detection of adulteration, cold on-column and split-injection modes for CGC-FID, and silylation or thin-layer chromatography pretreatment and simple dilution of one or more of the oil samples--are also presented. The normalized percentage area of the TG species is sufficient for the method limits used in this study. Mixtures of virgin olive oil with refined or residue olive oil could not be distinguished from the virgin type by the method used in this study.  相似文献   

20.
A simple and fast procedure is proposed for the extraction of iron (Fe), copper (Cu), and nickel (Ni) in 16 varieties of sunflower seed oil samples using an ultrasonic bath. The experimental parameters of the ultrasonic-assisted extraction (UAE) method were optimized to improve the sensitivity and detect the metals at trace levels in minimum time. Conventional wet acid digestion method was used for comparative purposes. The optimum recovery of all 3 metals was obtained by UAE for 7 min, while the separation of aqueous and organic phases after extraction using centrifugation (UAE-2) required 3 min, as compared to the conventional equilibration method (UAE-1) that required 90 min. The respective recoveries of Cu, Fe, and Ni obtained with UAE-2 were in the range of 95.8-97.5, 93.5-98.3, and 95.6-98.2%, respectively, for different varieties of sunflower oil samples. Accuracy was determined by the standard addition method. Under the optimum operating conditions, the limits of detection obtained from the standard addition curves were 21.7, 20.4, and 35.6 ng/mL for Fe, Cu, and Ni, respectively. The fact that all varieties of sunflower oil contain significant amounts of Fe, Cu, and Ni indicates the deterioration of sunflower oil quality immediately after extraction from seeds, which poses a threat to oil quality and human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号