首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new analytical procedure for the speciation of antimony in liver tissues is presented here. For this purpose, a flow injection system has been developed for the treatment of samples and the determination of antimony by hydride generation - atomic absorption spectrometry. The method involves the sequential and the on-line extraction of antimony(III) and antimony(V) from solid lyophilized blood and hamsters liver tissues, with 1.5 mol l(-1) acetic acid and 0.5 mol l(-1) sulfuric acid for Sb(III) and Sb(V), respectively. Reduction of Sb(V) to Sb(III) for stibine generation is effected by the on-line pre-reduction with l-cysteine. The linear ranges were 2.5-20 and 1.0-25 mug l(-1) of Sb(III) and Sb(V), respectively. The detection limits (3sigma) were 1.0 mug l(-1) for Sb(III) and 0.5 mug l(-1) for Sb(V). The relative standard deviation values for fifteen independent measurements were 2.1 and 1.8% for Sb(III) and Sb(V), respectively. The recovery studies performed with samples of cattle liver provided results from 98 to 100% for Sb(III) and from 100 to 103% for Sb(V) for samples spiked with single species. For samples spiked with both Sb(III) and Sb(V), the recovery varied from 97 to 103% for Sb(III) and from 101 to 103% for Sb(V).  相似文献   

2.
A sensitive, precise and automated non-chromatographic method for Sb(III) and Sb(V) analytical speciation based on a continuous tandem on-line separation device in connection with inductively coupled plasma-atomic emission (ICP-AES) detection is proposed. Two on-line successive separation steps are included into this method: a continuous liquid-liquid extraction of Sb(III) with ammonium pyrrolidine dithiocarbamate (APDC) into methylisobuthylketone (MIBK), followed by direct stibine generation from the organic phase. Both separation steps are carried out in a continuous mode and on-line with the ICP-AES detector. Optimization of experimental conditions for the tandem separation and ICP-AES detection are investigated in detail. Detection limits for Sb(III) were 3 ng.mL(-1) and for Sb(V) 8 ng.mL(-1). Precisions observed are in the range +/- 5%. The proposed methodology has been applied to Sb(III) and Sb(V) speciation in sea-water samples.  相似文献   

3.
A simple, selective and sensitive derivative spectrophotometric method is proposed for the simultaneous determination of gallium(III) and indium(III) in mixtures using 1-(2-pyridylazo)-2-naphthol in cationic micellar medium, without any prior separation. Beer's law is obeyed between 2.80x10(-1)-3.63 and 4.60x10(-1)-9.20 mug ml(-1) concentration of Ga(III) and In(III) at 550 and 542 nm, the isodifferential points of indium and gallium complexes in the first-order derivative mode, respectively. The proposed method is successfully applied for the determination of gallium and indium in standard reference materials and synthetic binary mixtures with a relative error of +/-2.07 and +/-2.55%, respectively.  相似文献   

4.
A new method of hollow fiber supported liquid membrane extraction (HF-SLME) coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) for the speciation of Sb(III) and Sb(V) in environmental and biological samples has been developed. The method is based on the complex of Sb(III) with sodium diethyldithiocarbamate (DDTC). The formed hydrophobic complex is subsequently extracted into the lumen of hollow fiber, whereas Sb(V) is remained in aqueous solutions. The extraction organic phase was injected into TS-FF-AAS for the determination of Sb(III). Total Sb concentration was determined after reduction of Sb(V) to Sb(III) in the presence of l-cysteine and the extraction procedure mentioned above. Sb(V) was calculated by subtracting of Sb(III) from the total Sb. DDTC was used as complexing reagent. 1-Octanol was immobilized in the pores of the polypropylene hollow fiber as liquid membrane and also used as the acceptor solution. Some parameters that influenced extraction and determination were evaluated in detail, such as concentration of sodium diethyldithiocarbamate (DDTC), type of organic solvent, pH of samples, stirring rates, extraction time, as well as interferences. Under optimized conditions, a detection limit of 0.8 ng mL−1 and an enrichment factor of 160 were achieved. The relative standard deviation (RSD) was 6.2% for Sb(III) (50 ng mL−1, n = 5). The proposed method was successfully applied to the speciation of Sb(III) and Sb(V) in environmental and biological samples with satisfactory results.  相似文献   

5.
Abbaspour A  Najafi M 《Talanta》2003,60(5):1079-1084
A method for simultaneous spectrophotometric determination of Sb(III) and Sb(V) using multivariate calibration method is proposed. This method is based on the development of the reaction between the analytes and pyrogallol red at pH 2.00. The selection of variables was studied. A series of synthetic solutions containing different concentrations of Sb(III) and Sb(V) were used to check the prediction ability of the partial least squares model. The calibration curves were linear over the range of 0.3-3.4 and 0.3-3.0 μg ml−1 for Sb(III) and Sb(V), respectively. The detection limits were 0.177 and 0.200 μg ml−1 for Sb(III) and Sb(V), respectively.  相似文献   

6.
The H-point standard addition method (HPSAM) was applied to kinetic data for simultaneous determination of Sb(V) and Sb(III) and also selectively determines Sb(V) in the presence of Sb(III). The method is based on the differences between rate of complexation of pyrogallol red with Sb(V) and Sb(III) at pH=2. Sb(V) can be determined in the range of 0.3-2.0 μg ml−1 with satisfactory accuracy and precision in the presence of excess Sb(III). Good selectivity was obtained over the variety of metal ions. The proposed method was used for determination of Sb(V) and Sb(III) in river and spring water samples.  相似文献   

7.
Summary A method is described for the speciation of Sb(III) and Sb(V) using HG-AAS. The efficiency of stibine generation using different pH, from Sb(III) and Sb(V) solutions, was tested. At high pH-values Sb(V) is not reduced to form stibine, Sb(III) being selectively determined. The three acids HCl, H2SO4 and H3PO4 at controlled pH were used to generate stibine, H3PO4 being the most satisfactory for antimony speciation. The interference of Sb(V) was studied for the case of Sb(III) determination with stibine generation in H3PO4 medium (pH 1.81). The speciation of Sb(III) and Sb(V) is possible up to a ratio of 1:9.  相似文献   

8.
Huang X  Zhang W  Xu G  Han S  Li Y  Li C 《Talanta》1998,47(4):869-875
Effects of cetyltrimethylammonium bromide (CTAB) and/or nonylphenoxypolyethoxyethanol (OP) on the absorption spectra of the complexes of molybdenum and tungsten with bromopyrogallol red (BPR) were studied. Based on these effects, a mixture of CTAB and OP was thus selected as a medium for the selective and sensitive determination of Mo in Mo/W binary mixtures. Under the optimum conditions, Beer's law was obeyed over the range 0.06-0.8 mug ml(-1) Mo with molar absorptivity being 1.3x10(5) l mol(-1) cm(-1) and detection limit 0.025 mug ml(-1). For 1.0 mug Mo, at least 20 mug W did not interfere in the determination of Mo with average recovery and relative standard deviation being 99.5% and <2%, respectively. The method developed maintained the features of simplicity and rapidity and, moreover, its selectivity and sensitivity enhanced greatly due to the use of CTAB/OP mixed micellar medium. When coupled with a compatible concentration method, the proposed method could be used for the determination of trace Mo in natural waters.  相似文献   

9.
This stability of Sb(III) and Sb(V) species was studied during single extraction from soils by water. EDTA, diluted H2SO4 and H3PO4, and oxalic acid/oxalate solutions, with and without ascorbic acid, were used as stabilizing reagent of both Sb species. Antimony redox speciation in soil extracts was performed by selective hydride generation-atomic fluorescence spectrometry. Simulated extraction procedures (without soil) showed that, except in oxalate medium, Sb(III) was oxidized to Sb(V), and this reaction was avoided with ascorbic acid. Recovery studies from a spiked agricultural soil showed that no oxidation but sorption of Sb(III) occurred during the extraction process in water and H2SO4 medium, and quantitative oxidation in EDTA and oxalate medium. With ascorbic acid, this oxidation was totally avoided in EDTA and partially avoided in oxalate solution. A new sequential extraction procedure was proposed and applied to the fractionation and redox speciation of antimony in agricultural soils, using EDTA + ascorbic acid, pH 7 (available under complexing and moderately reducible conditions); oxalic acid/oxalate + ascorbic acid (extractable in reducible conditions) and HNO3 + HCl + HF (residual fraction). The proposed extraction scheme can provide information about the availability and mobility of antimony redox species in agricultural soils.  相似文献   

10.
A novel method for prevention of the oxidation of Sb(III) during sample pretreatment, preconcentration of Sb(III) and Sb(V) with nanometer size titanium dioxide (rutile) and speciation analysis of antimony, has been developed. Antimony(III) could be selectively determined by flow injection-hydride generation-atomic absorption spectrometry, coexisting with Sb(V). Trace Sb(III) and Sb(V) were all adsorbed onto 50 m g TiO2 from 500 ml solution at pH 3.0 within 15 min, then eluted by 10 ml of 5 mol/l HCl solution. One eluent was directly used for the analysis of Sb(III); to the other eluent was added 0.5 g KI and 0.2 g thiourea to reduce Sb(V) to Sb(III), then the mixture was used for the determination of total antimony. The antimony(V) content is the mathematical difference of the two concentrations. Detection limits (based on 3sigma of the blank determinations, n=11) of 0.05 ng/ml for Sb(III) and 0.06 ng/ml for Sb(V), were obtained.  相似文献   

11.
A sensitive, precise and automated non-chromatographic method for Sb(III) and Sb(V) analytical speciation based on a continuous tandem on-line separation device in connection with inductively coupled plasma-atomic emission (ICP-AES) detection is proposed. Two on-line successive separation steps are included into this method: a continuous liquid-liquid extraction of Sb(III) with ammonium pyrrolidine dithiocarbamate (APDC) into methylisobuthylketone (MIBK), followed by direct stibine generation from the organic phase. Both separation steps are carried out in a continuous mode and on-line with the ICP-AES detector. Optimization of experimental conditions for the tandem separation and ICP-AES detection are investigated in detail. Detection limits for Sb(III) were 3 ng.mL–1 and for Sb(V) 8 ng.mL–1. Precisions observed are in the range ± 5%. The proposed methodology has been applied to Sb(III) and Sb(V) speciation in sea-water samples.  相似文献   

12.
The paper presents a procedure for the multi-element inorganic speciation of As(III, V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Total As(III, V), Se(IV, VI) and Sb(III, V) were determined according to the following procedure: titanium dioxide (TiO2) was used to adsorb inorganic species of As, Se and Sb in sample solution; after filtration, the solid phase was prepared to be slurry for determination. For As(III), Se(IV) and Sb(III), their inorganic species were coprecipitated with Pb-PDC, dissolved in dilute nitric acid, and then determined. The concentrations of As(V), Se(VI) and Sb(V) can be calculated by the difference of the concentrations obtained by the above determinations. For the determination of As(III), Se(IV) and Sb(III), palladium was chosen as a modifier and pyrolysis temperature was 800 °C. Optimum conditions for the coprecipitation were listed for 100 ml of sample solution: pH 3.0, 15 min of stirring time, 40.0 μg l−1 Pb(NO3)2 and 150.0 μg l−1 APDC. The proposed method was applied to the determination of trace amounts of As(III, V), Se(IV, VI) and Sb(III, V) in river water and seawater.  相似文献   

13.
An analytical method was developed for antimony speciation and antimony(III) preconcentration in water samples. The method is based on the selective retention of Sb(III) by modified Saccharomyces cerevisiae in the presence of Sb(V). Heat, caustic and solvent pretreatments of the biomass were investigated to improve the kinetics and thermodynamics of Sb(III) uptake process at room temperature. Heating for 30 min at 80 degrees C was defined as the optimal treatment. Antimony accumulation by the cells was independent of pH (5-10) and ionic strength (0.01-0.1 mol L(-1)). 140 mg of yeast and 2h of contact were necessary to ensure quantitative sequestration of Sb(III) up to 750 microg L(-1). In these conditions, Sb(V) was not retained. Sb(V) was quantified in sorption supernatant by inductively coupled plasma mass spectrometry (ICP-MS) or inductively coupled plasma optical emission spectrometry (ICP-OES). Sb(III) was determined after elution with 40 mmol L(-1) thioglycolic acid at pH 10. A preconcentration factor close to nine was achieved for Sb(III) when 100mL of sample was processed. After preconcentration, the detection limits for Sb(III) and Sb(V) were 2 and 5 ng L(-1), respectively, using ICP-MS, 7 and 0.9 microg L(-1) using ICP-OES. The proposed method was successfully applied to the determination of Sb(III) and Sb(V) in spiked river and mineral water samples. The relative standard deviations (n=3) were in the 2-5% range at the tenth microg L(-1) level and less than 10% at the lowest Sb(III) and Sb(V) tested concentration (0.1 microg L(-1)). Corrected recoveries were in all cases close to 100%.  相似文献   

14.
The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid–liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid–liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.  相似文献   

15.
The speciation of inorganic Sb(III) and Sb(V) ions in aqueous solution was studied. The adsorption behavior of Sb(III) and Sb(V) ions were investigated as iodo and ammonium pyrollidine dithiocarbamate (APDC) complexes on a column filled with Amberlite XAD-8 resin. Sb(III) and Sb(V) ions were recovered quantitatively and simultaneously from a solution containing 0.8 M NaI and 0.2 M H2SO4 by the XAD-8 column. Sb(III) ions were also adsorbed quantitatively as an APDC complex, but the recovery of the Sb(V)-APDC complex was found to be <10% at pH 5. According to these data, the concentrations of total antimony as Sb(III)+Sb(V) ions and Sb(III) ion were determined with XAD-8/NaI+H2SO4 and XAD-8/APDC systems, respectively. The Sb(V) ion concentration was calculated by subtracting the Sb(III) concentration found with XAD-8/APDC system from the total antimony concentration found with XAD-8/NaI+H2SO4 system. The developed method was applied to determine Sb(III) and Sb(V) ions in samples of artificial seawater and wastewater.  相似文献   

16.
The biological activity of antimony depends on the oxidation state. The Sb(III) and Sb(V) states can be distinguished, even in the ng l?1 range, by coupling extraction with ammonium pyrrlidenedithiocarbamate into methyl isobutyl ketone (APDC/MIBK), or N-benzoyl-N-phenylhydroxylamine (BPHA) into chloroform, with anodic stripping voltammetry (a.s.v.). After complex formation with APDC in acetate-buffered medium, Sb(III), but not Sb(V), is extracted into MIBK and quantified by a.s.v. Antimony(V) is quantified in the aqueous phase after removal of Sb(III) by extraction with BPHA into chloroform from the medium acidified with nitric acid. The applicability of the proposed separation/a.s.v. method is demonstrated for samples of rain, snow and water from a dredging operation. The stability of the two antimony species is examined for natural waters with Sb(III) and Sb(V) added; possibilities of stabilization are described. The precedures should be suitable for speciation of antimony in relatively unpolluted waters.  相似文献   

17.
This paper describes the preparation of zwitterion-functionalized polymer microspheres (ZPMs) and their application to simultaneous enrichment of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) from environmental water samples. The ZPMs were prepared by emulsion copolymerization of ethyl methacrylate, 2-diethylaminoethyl methacrylate and triethylene glycol dimethyl acrylate followed by modification with 1,3-propanesultone. The components were analyzed by elemental analyses as well as Fourier transform infrared spectroscopy, and the structures were characterized by scanning electron microscopy and transmission electron microscopy. The ZPMs were packed into a mini-column for on-line solid-phase extraction (SPE) of the above metal ions. Following extraction with 40 mM NH4NO3 and 0.5 M HNO3 solution, the ions were quantified by ICP-MS. Under the optimized conditions, the enrichment factors (from a 40 mL sample) are up to 60 for the ions V(V), As(III), Sb(III) and Hg(II), and 55 for Cr(III) and Sn(IV). The detection limits are 1.2, 3.4, 1.0, 3.7, 2.1 and 1.6 ng L?1 for V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II), respectively, and the relative standard deviations (RSDs) are below 5.2%. The feasibility and accuracy of the method were validated by successfully analyzing six certified reference materials as well as lake, well and river waters.
Graphical abstract Zwitterion-functionalized polymer microspheres (ZPMs) were prepared and packed into a mini-column for on-line solid-phase extraction (SPE) via pump 1. Then V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) ions in environmental waters were eluted and submitted to ICP-MS via pump 2.
  相似文献   

18.
Raychaudhuri A  Roy SK 《Talanta》1994,41(2):171-178
A method for quantitative separation of antimony(III) by sorption on polyether based polyurethane foam and its spectrophotometric determination has been described. The method involves formation of a pink-red complex of antimony(III) with iodide (0.045M) and dithizone (2.3 x 10(-5)M) in 0.25-0.75M H(2)SO(4) medium, sorption of the complex on polyurethane foam (within 45 min) at room temperature followed by its elution with acidified acetone (acetone containing 0.008% H(2)SO(4)) and spectrophotometric measurement at 507.2 nm ( = 2.56 x 10(4) l mol cm). The method obeys Beer's law from 0.1 to 6.0 mug antimony(III). Tolerance limits of other ions are Co (100 mug), Ni (100 mug), Fe (10 mug), Cu (0.5 mug), Sn (20 mug), Zn (100 mug), As (100 mug), Mn (200 mug), Pb (50 mug), Ti (100 mug), V (50 mug), etc. Interference by iron and copper have been eliminated by treating with KOH prior to the extraction of antimony. The method has been standardized with glass samples spiked with known amounts of antimony and applied to the determination of antimony in various glasses.  相似文献   

19.
Puri BK  Gautam M 《Talanta》1978,25(8):484-485
Conditions have been developed for the extraction of chromium(III) and rhodium(III) as their 8-hydroxyquinolinates into molten naphthalene. The naphthalene is allowed to solidify, separated by filtration, dried with filter paper and dissolved in chloroform. The solution is diluted to 10 ml and its absorbance measured at 410 nm for chromium and 425 nm for rhodium, against a reagent blank. In both cases the solution is stable for 24-36 hr. Beer's law is obeyed over the range of 2.7-48.6 mug of chromium or 2.7-57.5 mug of rhodium in 10 ml of the chloroform solution. The molar absorptivity is 3 x 10(3) l. mole(-1) . cm(-1) for chromium and 3.6 x 10(4) for rhodium. Solutions containing 27.0 mug of chromium or 10.95 mug of rhodium give a mean absorbance of 0.140 and 0.395 respectively, with standard deviations of 0.002(2) and 0.004(7). Most metal ions that form oxinates may interfere, but can be removed beforehand by normal liquid-liquid extraction.  相似文献   

20.
A quick and reliable analytical method for the separation and quantification of extractable Sb(III) and Sb(V) in atmospheric particulate matter (PM) by ion chromatography(IC)-inductively coupled plasma-mass spectrometry (ICP-MS) has been optimized, validated on pairs of real, equivalent PM10 samples and applied to a field monitoring campaign in a urban site. Both Sb(III) and Sb(V) forms were detected in real samples with Sb(III)/Sb(V) ratios up to 1.5. These two Sb species accounts only for a portion, of variable magnitude, of the total extractable Sb (10–70%); anyway, no other soluble Sb species were detected in the samples. The analysis of size-segregated samples collected by a 13-stage impactor showed that the recovery of [Sb(III) + Sb(V)] versus total extractable Sb is almost quantitative in the coarse fraction while it is below than 10% in the fine fraction. In the extracted solution from particles below 1 μm we could highlight the presence of Sb-containing suspended solid nano-particles, which probably constitute the missing fraction. The contribution of nano-particles can be estimated as the difference between ICP-MS and IC-ICP-MS data, as small size solid bodies are able to pass through the nebulizer and reach the plasma torch, while they are retained by the chromatographic column. The aggregation state of these nano-particles seems to be easily altered when they are suspended in a water solution; a similar behavior could be hypothesized when in contact with biological fluids. It has been confirmed that brake pad abrasion is the prevalent source of Sb(III) in PM and that Sb(V) may be formed by oxidation during the braking processes. Differing from other environmental matrices, there is no evidence of any spontaneous oxidative conversion within the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号