首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We report the separation of polycyclic aromatic hydrocarbons (PAHs) using 0.1% poly(ethylene oxide) (PEO) in micellar electrokinetic chromatography (MEKC). In the presence of PEO, adsorption of PAHs on the capillary wall was reduced, leading to better resolution and reproducibility. Effects of tetrapentylammonium iodide (TPAI), dextran sulfate (DS), methanol, and sodium lauryl sulfate (SDS) on the separation of PAHs were elucidated. In terms of resolution and speed, DS, compared to TPAI, is a better additive for separation of PAHs. When using 0.1% PEO solution containing 45% methanol, 50 mM SDS, and 0.02% DS, separation of 10 PAHs containing 2 to 5 benzene rings was accomplished in less than 12 min at 15 kV in a commercial CE system. The method has also been tested for separating seven PAHs with high quantum yields when excited at 325 nm using a He-Cd laser. Unfortunately, separation of the seven PAHs was not achieved and sensitivity diminished under the same conditions. To optimize sensitivity, resolution and speed, a stepwise technique in MEKC has been proposed. The seven PAHs were resolved in 35 min at 15 kV when separation was performed in 0.1% PEO solution containing 35 mM SDS, 40% methanol and 0.02% DS for 2 min, and subsequently in 0.1% PEO solution containing 20 mM SDS, 50% methanol, and 0.02% DS.  相似文献   

2.
The analysis and use of fullerenes in capillary electrophoresis (CE) was investigated. Sodium dodecyl sulfate (SDS) was used to solubilize fullerenes C60, C70, and a mixture of C60 and C70 in water. The behavior of the solutions of the C60- and C70-SDS complexes was examined by CE with on-line UV-Vis diode array detection. This study included the use of a C60-SDS complex as a new method of micellar electrokinetic chromatography (MEKC) for the separation of polycyclic aromatic hydrocarbons (PAHs) using CE with uniwavelength detection. Since SDS micelles act as a pseudostationary phase in which the PAH compounds partition with their hydrophobic interior, the addition of C60 within the micelles enhanced separation of the PAHs. The preliminary results using C60-MEKC with SDS were compared to those obtained with MEKC with SDS. The capillary electrophoretic separations were performed in 10 mM borate-phosphate buffer with 100 mM SDS at pH 9.5.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants of water, and their determination at trace levels in the aquatic ecosystems is essential. In this work, an ultrasound-assisted dispersive liquid–liquid microextraction (DLLME) procedure was suggested utilizing a binary dispersive agent for recovery of different molecular weight polycyclic aromatic hydrocarbons (PAHs) from waters. The detection was carried out by gas chromatography–mass spectrometry (GC-MS) as well as high-performance liquid chromatography with fluorescence and diode-array detection (HPLC-FD/PDA). The method was optimized for the extraction of analytes with respect to the mixture composition, ratios of components, ultrasonication time and centrifugation parameters. The analytical schemes for PAHs extraction from water samples using different ratios of extraction and dispersive solvents are reported. The mixture consisting of chloroform and methanol was applied for the extraction of PAHs containing two or three fused aromatic rings; the mixture of chloroform and acetonitrile is suitable for PAHs containing more than four aromatic rings. The mixture of chloroform:acetone + acetonitrile was applied in the universal scheme and allowed for the simultaneous extraction of 20 PAHs with different structures. The developed sample preparation schemes were combined with GC-MS and HPLC-FD/PDA, which allowed us to determine the analytes at low concentrations (from 0.0002 µg/L) with the recoveries exceeding 80% and relative standard deviations of about 8%. The developed methods for the determination of 20 PAHs were applied to the analysis of water samples from the Karasun Lake (Krasnodar), Azov Sea (Temryuk) and Black Sea (Sochi).  相似文献   

4.
用固相萃取技术富集水中多环芳烃   总被引:21,自引:0,他引:21  
贾瑞宝  孙韶华  刘德珍 《色谱》1997,15(6):524-526
系统地研究了淋洗剂强度、用量和有机改性剂的加入对固相萃取水中多环芳烃回收率的影响。研究表明,二氯甲烷和苯的洗脱效果较好,回收率为87%~102%;当淋洗剂的用量超过1.5mL时,对多环芳烃的回收率没有明显的影响;向自来水样中加入20%有机改性剂可明显改善多环芳烃的回收效果,使回收率达到89%~108%。  相似文献   

5.
A simplified extraction method was developed for extracting high molecular weight polycyclic aromatic hydrocarbons (PAHs) from river sediments. The samples were extracted 3 times with 5 mL of solvent (toluene:methanol, 9 : 1, v/v) at 100 °C, 10 minutes for each extraction. After clean‐up and concentration, extracts were analyzed by gas chromatography coupled with mass spectrometer (GC‐MS). The extraction efficiency and accuracy was evaluated by the standard reference material (SRM‐1941b). Comparing to certified values, the average recoveries of high molecular weight PAHs with 3, 4, 5 and 6 fused benzene rings were 72.9∼113.2 % (R.S.D. 2.3∼6.3 %) except those of dibenz[a,h]anthracene (206.2±4.6 %). The average recoveries for PAHs spiked sediment samples were comparable with accelerated solvent extraction (ASE) and Soxhlet methods. The simple extraction method consumes less solvent, fewer amount of sample than those of conventional methods. The lowest quantitation limit of PAHs is 1.1 μg/kg.  相似文献   

6.
气相色谱质谱法测定化妆品中9种多环芳烃   总被引:1,自引:0,他引:1  
建立了气相色谱质谱法测定化妆品中9种多环芳烃的分析方法。化妆品中的萘、苯并[a]蒽、、苯并[b]荧蒽、苯并[j]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、二苯并[a,h]蒽等9种多环芳烃用甲醇超声提取后,用环己烷液-液萃取后浓缩,经硅胶-中性氧化铝柱净化后,采用气相色谱-质谱测定。多环芳烃浓度在0.05~2 mg/L范围内,质量浓度与其峰面积呈良好的线性关系。在低、中、高3个添加水平下,9种多环芳烃化合物的平均回收率为81.6%~100.2%,相对标准偏差为1.3%~5.8%。方法可用于化妆品中多环芳烃的检测。  相似文献   

7.
C18-functionalized magnetic microspheres synthesized in a three-stage system and characterized by Fourier transform infrared (FTIR) spectroscopy and SEM were applied for clean-up and enrichment of polycyclic aromatic hydrocarbons (PAHs) in soil samples combined with ultrasonication extraction. Magnetic solid-phase extraction (MSPE) parameters, such as elution solvents, amounts of sorbents, enrichment time and organic modifier, were optimized together with ultrasonication time and extraction solvents. Under the optimal conditions, the developed method provided spiked recoveries of 63.2-92.8% with RSDs of less than 6.4% and limits of detection were 0.5-1.0 ng/g. This new method provides several advantages, such as high extraction efficiency, convenient extraction procedure and short analysis times. Finally, the method was successfully applied to the determination of polycyclic aromatic hydrocarbons in soil samples.  相似文献   

8.
The composition of the dopant for the analysis of polycyclic aromatic hydrocarbons (PAHs) by liquid chromatography/dopant-assisted atmospheric-pressure photoionization/mass spectrometry under reversed-phase conditions was optimized to enhance the ionization efficiency for PAHs. The most suitable dopant was a toluene/anisole mixture (99.5:0.5, v/v) and it could improve limit of detections (LODs) to 0.79-168 ng mL(-1) (signal-to-noise (S/N)=3) for 16 common PAHs. The LODs are 3.8-40 times lower than those obtained with toluene alone and are comparable to those obtained using gas chromatography/mass spectrometry.  相似文献   

9.
In this study, a series of polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing polycyclic aromatic hydrocarbons (NPAHs) is separated on a hybrid stationary phase using methanol and acetonitrile mobile phases. Temperature is varied from 283 to 313 K in order to determine thermodynamic and kinetic parameters of the separation. Thermodynamic behavior is characterized by the retention factor and associated changes in molar enthalpy, whereas kinetic behavior is characterized by the rate constants and associated activation energies. In this study, the retention factors for the NPAHs are smaller than those for the parent PAHs in methanol, while they are more similar to the parent PAHs in acetonitrile. The changes in molar enthalpy are very similar for all solutes, yet are more negative in acetonitrile than in methanol. The rate constants for the NPAHs are smaller than those for their parent PAHs in both mobile phases. Moreover, the rate constants in acetonitrile are one to four orders of magnitude smaller than those in methanol. Based on these thermodynamic and kinetic results, the hybrid stationary phase is compared to traditional silica stationary phases. In addition, the relative contributions from the partition and adsorption mechanisms are discussed.  相似文献   

10.
For several years, microwave assisted extraction (MAE) was applied to extract organic compounds such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, etc., from soils, sediments and standard reference materials. Very few authors applied this methodology for the extraction of PAHs from atmospheric particulate matter. In the present study, MAE of polycyclic aromatic hydrocarbons with hexane/acetone (1:1) from real atmospheric particulate samples was investigated and the effect of microwave energy and irradiation time studied. The yields of extracted compounds obtained by microwave irradiation were compared with those obtained using traditional Soxhlet extraction. MAE was evaluated using spiked real atmospheric particulate samples and two standard reference materials. Analytical determinations of PAHs were carried out by high performance liquid chromatography (HPLC) with ultraviolet and fluorescence detection. The best recoveries were achieved with a microwave energy of 400 W and an irradiation time of 20 min.  相似文献   

11.
Pasture vegetation plays an important role in the air-surface exchange and food chain transfer of polycyclic aromatic hydrocarbons (PAHs). Therefore, considerable research has been focused towards measuring PAHs in vegetation using different analytical methods. However, in most cases information on the efficiencies of the different extraction methods employed is missing. This complicates data interpretation and inter-study comparisons. To address this deficiency, the extraction efficiencies of two commonly used pasture vegetation extraction techniques (sonication and soxhlet) and different solvents (hexane, DCM and hexane:acetone [4:1, v/v]) were compared. The completeness of the extraction was investigated using alkaline saponification in methanol. Soxhlet extraction was able to access between 60 and 90% of the total amount of PAHs in the pasture vegetation. Sonication was less efficient, only being able to extract between 10 and 50% of the PAHs. Extraction efficiencies were found to increase with increasing PAH molecular weight. The implications of these findings on data interpretation are discussed.  相似文献   

12.
The Focused Microwave (FMW) assisted extraction for organic contaminant analysis, such as polycyclic aromatic hydrocarbons (PAHs), in environmental matrices, was studied and optimized using a factorial design. The effects and interactions of five parameters on the extraction recovery were investigated in a few experiments with a good accuracy: irradiation power and time, volume and nature of solvent, and percentage of moisture of the matrix. The results show that the percentage of water added to the freeze-dried matrix can significantly increase the extraction recovery. The irradiation power has also a positive effect. The choice of solvent is significant: a mixture of heptane/ethanol (80/20, v/v) allows better results than dichloromethane. Some interactions between percentage of moisture and the two previous parameters have been demonstrated: the effect of power and nature of solvent depends on the water content. Some optimal conditions have been established: 10 mL of heptane/ethanol (80/20, v/v), extraction time of 2 min, and different possible pairs of moisture content and irradiation power (140 W and 0% of moisture or 20 W and 40% of moisture) according to the need and wish of the experimentalist; or 10 mL of dichloromethane, extraction time of 2 min, 20 W and 40% of moisture. These optimized conditions provide very good recoveries compared to conventional extraction such as Soxhlet (near 100%) for the model matrix (a marine sediment) used for the factorial design. FMW extraction is a good alternative to Soxhlet extraction with reduction of time and reduction of solvent volume. This study shows that it is possible to substitute chlorinated solvent by a less toxic solvent, like a mixture of heptane and ethanol.  相似文献   

13.
参照美国EPA525.1方法,C18-固相萃取膜萃取饮用水中的有机物,利用GC/MS法鉴定多环芳烃(PAHs),使用16种多环芳烃混合标准样绘制标准曲线,以内标法对PAHs进行定量分析.采用本方法研究某水厂经过深度处理后的出厂水中的7种多环芳烃的含量,PAHs的平均回收率为94.0%~97.7%.检测限为0.001μg/L.  相似文献   

14.
The aim of this work was to optimize an ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons (PAHs) in sediments and to compare it with the reflux procedure using methanolic potassium hydroxide. Sample extracts were purified with a miniaturized silica gel chromatographic column and analyzed by gas chromatography-mass spectrometry (GC-MS). Ultrasonication using n-hexane-acetone (1:1, v/v) solvent mixture on dried homogenized marine sediment gave better precision (smaller relative standard deviation (RSD) values) and comparable quantities of individual PAH's compared to the reflux procedure. Ultrasonication with the n-hexane-acetone (1:1, v/v) mixture, utilizing four 15 min extraction cycles, was found to be sufficient for extracting PAHs from wet sediments. The optimized ultrasonic extraction procedure extracted aliphatic and aromatic hydrocarbons from the National Institute of Standards and Technology SRM 1941a with recoveries greater than 90%. The major advantages of ultrasonication compared to the reflux method are the lower extraction times, simplicity of the apparatus and extraction procedure. The optimized ultrasonication procedure has been used in our laboratory to extract hydrocarbons from naturally wet sediments from rivers, and coastal and marine areas.  相似文献   

15.
The acid-induced cloud-point extraction (CPE) technique based on sodium dodecylsulfate (SDS) micelles has been used for preconcentration of ten representatives of polycyclic aromatic hydrocarbons (PAHs) for the following fluorescence determination. The effect of the acidity of solution, SDS and electrolyte concentrations, centrifugation time and rate on the two-phase separation process and extraction percentages of PAHs have systematically been examined. Extraction percentages have been obtained for all PAHs after CPE ranged from 67 to 93%. Pyrene was used as a fluorescent probe to monitor the micropolarity of the surfactant-rich phase compared with SDS micelles and this allows one to conclude that water content in micellar phase after CPE is reduced. The spectral, metrological and analytical characteristics of PAH fluorimetric determination after acid-based CPE with sodium dodecylsulfate are presented. Advantages provided by using CPE in combination with fluorimetric determination of PAHs are discussed. The determination of benz[a]pyrene in tap water is presented as an example.  相似文献   

16.
Optimized separation of a mixture of 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) by high performance liquid chromatography (HPLC) using the sequential simplex optimization method was accomplished by varying the starting and ending compositions of acetonitrile and water, linear gradient time, mobile phase flow rate, column temperature and holding time of the final mobile phase composition. Focusing on the two sets of difficult-to-separate pairs (acenaphthene–fluorene and benzo[g,h,i]perylene–indeno[1,2,3-c,d]pyrene), analysis time was reduced by about ten percent through the use of an organic modifier (isopropanol or methanol), under both optimum and near-optimum conditions, while maintaining good separation of the remaining PAHs. High sensitivity for all of the 16 PAHs was achieved by wavelength programming during elution using five wavelengths (224, 235, 254 270 and 296 nm), depending upon the molar absorptivities of the individual compounds. Detection limits (DLs) ranging from 0.002 (benzo[a]pyrene) to 0.140 μg ml−1 (acenaphthene) were achieved for this set of 16 standard compounds.  相似文献   

17.
A multiresidue method was developed for the de termination of 16 polycyclic aromatic hydrocarbons (PAHs) in unifloral and multifloral honeys. The analytical procedure is based on the matrix solid-phase dispersion of honey on a mixture of Florisil and anhydrous sodium sulfate in small glass columns and extraction with hexane-ethyl acetate (90 + 10, v/v) with assisted sonication. The PAH residues are determined by gas chromatography with mass spectrometric detection using selected-ion monitoring. Average recoveries for all the PAHs studied were in the range of almost 80 to 101%, with relative standard deviations of 6 to 15%. The limits of detection ranged from 0.04 to 2.9 microg/kg. The simultaneous extraction and cleanup of samples makes this method simple and rapid, with low consumption of organic solvents  相似文献   

18.
Desorption electrospray ionization mass spectrometry (DESI-MS) was applied for the first time to the analysis of semivolatile organic compounds (SVOC) in atmospheric aerosols. We took polycyclic aromatic hydrocarbons (PAHs) as representatives of SVOCs. The DESI-MS conditions were optimized and the limit of detection for PAHs was about 10 pg with 5 s sampling time. PAHs from both laboratory-made biomass burning aerosols and ambient aerosols were selectively and rapidly analyzed without extraction or preconcentration. The observed PAH species and their relative ion intensities are discussed. This work demonstrates that DESI-MS is a promising method for rapid semiquantitative analysis of SVOC in atmospheric aerosols.  相似文献   

19.
建立了快速溶剂萃取(ASE)-气相色谱-串联质谱(GC-MS/MS)分析海洋沉积物中16种多环芳烃(PAHs)的分析方法。样品由正己烷-丙酮(1∶1,v/v)溶液萃取,经无水硫酸钠脱水、氮吹浓缩后,采用硅胶固相萃取小柱进行净化,然后经HP-5MS色谱柱(30 m×0.25 mm×0.25 μm)分离,在电子轰击电离源下以多反应监测(MRM)模式进行检测,内标法定量。分析结果表明,16种PAHs在0.01~1.00 mg/L范围内线性关系良好,相关系数(R)大于0.997;目标物的加标回收率为75.8%~97.8%;日内与日间精密度(RSD)均小于10%。当取样量为20.0 g时,16种PAHs的方法检出限为0.048~0.234 μg/kg。该法快速、准确、稳定,能够满足海洋沉积物中痕量PAHs的测定。  相似文献   

20.
Wang  Rong  Chen  Zilin 《Mikrochimica acta》2017,184(10):3867-3874
Microchimica Acta - A novel covalent organic framework based magnetic adsorbent was developed for magnetic solid phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs). Covalent organic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号