首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ketola RA  Virkki VT  Ojala M  Komppa V  Kotiaho T 《Talanta》1997,44(3):373-382
The aim of this work was to compare the characteristics of three methods, membrane inlet mass spectrometry (MIMS), purge-and-trap gas chromatography-mass spectrometry (P&T) and static headspace gas chromatography (HSGC), for the determination of volatile organic compounds in water samples as used in routine analysis. The characteristics examined included linear dynamic ranges, detection limits of selected environmentally hazardous volatile organic compounds (e.g. toluene, benzene and trichloroethene) in water, required analysis time and reproducibility of the analytical methods. The MIMS and P&T methods had the lowest detection limits for all the tested compounds, ranging from 0.1 to 5 mug 1(-1). Linear dynamic ranges using the MIMS method were about four orders of magnitude and using the P&T method about two orders of magnitude. Detection limits of the HSGC method were 10-100 times higher than those of the other two methods, but the linear dynamic ranges were larger, even up to six orders of magnitude. The analysis time per sample was shortest for the MIMS method, from 5 to 10 min, and ranged around from 35 to 45 min for the HSGC and P&T methods. The reproducibilities of the methods were of the same order of magnitude, in the range of 1-13%. Agreement between the analytical results obtained for spiked samples and for environmental water samples by the three different methods was very good.  相似文献   

2.
Ojala M  Ketola RA  Virkki V  Sorsa H  Kotiaho T 《Talanta》1997,44(7):1253-1259
Two membrane inlet mass spectrometric (MIMS) methods for determining phenolic compounds in water are described and compared, namely direct analysis and analysis after acetylation of the phenolic compounds. Direct analysis of phenolic compounds in water is a very simple and rapid method and detection limits are relatively low (from 30 mug 1(-1) for phenol to 1000 mug 1(-1) for 4-nitrophenol). Analysis of phenolic compounds after aqueous acetylation is also a very simple and rapid method, and the detection limits are even two orders of magnitude lower than in the direct analysis. For example the detection limit of phenol acetate is 0.5 mug 1(-1) and that of 4-nitrophenol is 10 mug 1(-1). The acetylation method was also tested in the analysis of phenolic compounds from contaminated surface water samples.  相似文献   

3.
A general rapid on-line preconcentration method for the determination of trace metals coupled to flame atomic absorption spectrophotometry (FAAS) or ion chromatography (IC) with spectrophotometric detection is described. The method is based on the on-line precipitation of metal hydroxides with sodium hydroxide and their dissolution in a small volume of nitric acid solution. All the chemical and physical variables that affect the efficiency of metal precipitation and elution in the flow injection system have been studied. The detection limits obtained by FAAS are 0.1, 0.3, 0.5 and 0.5 mug l(-1) for Zn, Cu, Ni and Pb, respectively. When the on-line precipitation is coupled to IC with post-column derivatization with the spectrophotometric reagent 4-(2-pyridylazo) resorcinol (PAR), the detection limits are 3, 1, 5, 3, and 3 mug l(-1) for Cu, Zn, Ni, Co and Mn, respectively. The proposed general method was successfully applied to determine independently the above mentioned metals in compost and tap and river water samples.  相似文献   

4.
Two gas chromatographic methods, GC-FID (flame ionization detection) and GC-ELCD (electrolytic conductivity detector) are compared in tlie analysis of volatile organic sulfur compounds (VOSCs) in water samples with a membrane inlet mass spectrometry (MIMS) technique. Carbon disulfide, ethanethiol, dimethyl sulfide, ethyl-methyl sulfide, thiophene, and dimethyl disulfide were used as test compounds. Linear dynamic ranges were found to be two decades with the GC-ELCD method and four decades with the GC-FID and MIMS methods. Detection limits were at low (μg/1 levels with the two gas chromatographic methods and clearly below μg/1 level with the MIMS method. Analysis of one sample takes 40 min with the gas chromatographic methods and five minutes with the MIMS method. The selectivity was good, especially with the GC-ELCD and the MIMS method. In addition, quantitative results obtained with spiked water samples by the three methods are compared.  相似文献   

5.
Yang M  Li HL 《Talanta》2001,55(3):479-484
A new type of magnetic polymer microspheres containing ketone groups on the surface was synthesized. It can be reacted with hydrazine to produce electroactive adduct. Reduction of this derivative that was aggregated on the magnetic electrode is possible and effective in indirect determination of hydrazine. The experimental conditions and electrode structure were discussed. Under optimum conditions, It was found that the peak potential (Ep) of hydrazine is -1.06 V (vs. Ag/AgCl). Hydrazine in the range 0.3-500 mug l(-1) can be determined. The detection limits for hydrazine is 0.1 mug l(-1). The relative standard deviation for determination of 100 mug l(-1) hydrazine was 2.43 %. The method was applied to the determination of hydrazine in water samples with satisfactory results.  相似文献   

6.
A direct solid-phase microextraction (SPME) procedure has been developed and applied for the simultaneous determination of nonylphenol, nonylphenol mono- and diethoxylates and their brominated derivatives in raw and treated water at low microg l(-1) concentrations. Several parameters affecting the SPME procedure, such as extraction mode (headspace or direct-SPME), selection of the SPME coating, extraction time, addition of organic modifiers such as methanol and temperature were optimized. The divinylbenzene-carboxen-polydimethylsiloxane fiber was the most appropriate one for the determination of nonylphenol ethoxylates (NPEOs) and bromononylphenol ethoxylates (BrNPEOs) by SPME-GC-MS. The optimized method was linear over the range studied (0.11-2.5 microg l(-1)) and showed good precision, with RSD values between 4 and 15% and detection limits ranging from 30 to 150 ng l(-1) depending on the compound. The SPME procedure was compared with a solid-phase extraction-GC-MS method (C18 cartridge) for the analysis of NPEO and BrNPEOs in water samples. There was good agreement between the results from both methods but the SPME procedure showed some advantages such as lower detection limits, a shorter analysis time and the avoidance of organic solvents. The optimized SPME method was applied to determine nonylphenol and brominated metabolites in raw and treated water of Barcelona (NE Spain).  相似文献   

7.
A solid-phase microextraction method coupled with a flame photometric detector was developed for the analysis of organophosphorus pesticides in water. Two kinds of fiber (100 mum polydimethyl siloxane (PDMS) and 85 mum polyacrylate (PA) fibers) were used and compared. Parameters that may affect the extraction, such as the duration of absorption and desorption, temperature of absorption, ionic strength, elutropic strength, and concentration of humic acid were investigated. Higher sensitivity and lower detection limits were achieved using a PA fiber than using a PDMS fiber. The detection limit is less than 0.3 mug l(-1) for most of the analytes, except for mevinphos (420 mug l(-1)). The precision is better than 9%.  相似文献   

8.
A simple and convenient method has been developed for the speciation of chromium(III) and chromium(VI) in aqueous solutions using a sodium dodecyl sulphate coated alumina micro-column (1.5 cm x 5 mm i.d.) and graphite furnace-atomic absorption spectrometry (GF-AAS). Under the optimized conditions (pH 0.6, adjusted with hydrochloric acid; flow rate, 1 ml min(-1)) chromium(VI) is retained on the column and chromium(III) is collected and determined by GF-AAS. Total chromium is directly determined by GF-AAS and chromium(VI) is calculated by difference. The relative standard deviations (10 replicate analyses) at the 20 mug l(-1) level for chromium(III) and chromium(VI) and at the 40 mug l(-1) level for total chromium were 1.4%, 3.6% and 1.8%, and the corresponding limits of detection (based on 3sigma) were 0.57 mug ml(-1), 0.61 mug ml(-1) and 0.35 mug l(-1) respectively. No large interference effects have been observed from other investigated species and the method has been successfully applied to a range of water samples.  相似文献   

9.
Ion-exchanger colorimetry with 1-(2-pyridylazo)2-naphthol (PAN) has been developed for the determination of nickel at the mug/l. level in natural water. With 1 litre of sample the detection limits are 1.3 x 10(-9)Mi.e., 0.077 mug/l. for fresh water and 5.8 x 10(-9)Mi.e., 0.34 mug/l. for sea-water. The distribution ratio is 5 x 10(4). Copper and zinc, which form coloured species with PAN in the resin phase, can be completely eluted with a masking solution composed of EDTA and thioglycollic acid (pH 7.8). Cobalt can be determined simultaneously by measurement at 628 nm.  相似文献   

10.
An automated procedure has been developed for the determination of formetanate and its metabolite m-aminophenol (MAP) in water samples. MAP can be selectively determined in the presence of formetanate by direct on-line reaction with p-aminophenol and spectrophotometric measurement of the absorbance at 576 nm in the presence of KIO(4), as oxidizing agent. The method has a limit of detection of 5 x 10(-7)M, it provides a recovery percentage from 95 to 104% and permits one to carry out 120 measurements/hr. The spectrophotometric determination of formetanate must be carried out after a previous hydrolysis to MAP. To determine formetanate in the presence of MAP, two steps are necessary. Firstly, the MAP content is selectively determined as has been mentioned above. After that, the sample is treated with 0.05M NaOH at 90' degrees C, to hydrolyze the formetanate to MAP, and then the sum of both is determined spectrophotometrically. The difference between the results obtained in each step gives the formetanate concentration. The developed procedure for the determination of formetanate provides a sensitivity of 1070 absorbance units mol(-1) l and a limit of detection of 1.9 x 10(-7)M, which corresponds to 50 mug/l of formetanate hydrochloride. The method has been applied to the analysis of natural water samples fortified with formetanate and MAP, and formetanate has also been quantitatively recovered in irrigation waters at a concentration level of 1.9 x 10(-6)M which corresponds to 500 mug/l. On the other hand, working in the stopped-flow mode, for a reaction time of 100 sec, the sensitivity of the formetanate determination can be increased to 4642 absorbance units mol(-1) l but the limit of detection remains of the order of 44 mug/l.  相似文献   

11.
Trap‐and‐release membrane introduction mass spectrometry (T&R‐MIMS) with a removable direct insertion membrane probe (DIMP) is used to quantitate a variety of trace phenolic compounds in water after acetylation. The procedure is simple, rapid and robust, producing linear and reproducible responses for phenolic compounds with varying polarities. Acetylation minimizes the polarity effects of ring substituents; hence, T&R‐MIMS of the acetylated phenols provides lower and more uniform limits of detection (LODs) (2–15 µg L−1) than those obtained by direct T&R‐MIMS analysis of the non‐derivatized phenols. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Liu W  Lee HK 《Talanta》1998,45(4):631-639
High performance liquid chromatography (HPLC) combined with solid-phase extraction was reported on, for simultaneous analysis of pesticides in this work. The separation of 12 pesticides was achieved on a C(18) capillary column with gradient elution. Sub-microlitre injection volume of the samples and a U-shaped 35 nl flow cell were used to improve the separation and detection. In addition, the method used C(18) solid-phase extraction disks to allow a 250-fold enrichment of the pesticides from fortified water and apple samples. The calculated detection limits range was 0.15-0.8 mug/l. Under the optimal extraction conditions, recoveries of 85-107% for most of the pesticides at 1.0-10.0 mug/l level, were obtained.  相似文献   

13.
A fully automatic membrane inlet mass spectrometric (MIMS) on-line instrumentation for the analysis of aroma compounds in continuous beer fermentation processes was constructed and tested. The instrumentation includes automatic filtration of the sample stream, flushing of all tubing between samples and pH control. The calibration standards can be measured periodically. The instrumentation has also an extra sample line that can be used for off-line sample collection or it can be connected to another on-line method. Detection limits for ethanol, acetic acid and eight organic beer aroma compounds were from μg l−1 to low mg l−1 levels and the standard deviations were less than 3.4%. The method has a good repeatability and linearity in the measurement range. Response times are shorter than or equal to 3 min for all compounds except for ethyl caproate, which has a response time of 8 min. In beer aroma compound analysis a good agreement between MIMS and static headspace gas chromatographic (HSGC) measurements was found. The effects of different matrix compounds commonly present in the fermentation media on the MIMS response to acetaldehyde, ethyl acetate and ethanol were studied. Addition of yeast did not have any effect on the MIMS response of ethanol or ethyl acetate. Sugars, glucose and xylose, increased the MIMS response of all studied analytes only slightly, whereas salts, ammonium chloride, ammonium nitrate and sodium chloride, increased the MIMS response of all three studied compounds prominently. The system was used for on-line monitoring of continuous beer fermentation with immobilised yeast. The results show that with MIMS it is possible to monitor the changes in the continuous process as well as delays in the two-phase process.  相似文献   

14.
A method based on solid-phase microextraction and gas chromatography flame photometric detector for the determination of organophosphorous pesticides (OPPs) in aqueous samples was described. Five kinds of commercially available fibers-7, 30 and 100 mum PDMS, 85 mum PA and 65 mum PDMS-DVB-were compared and 100 mum PDMS and 85 mum PA were the most sensitive fiber coatings for the analytes. The extraction time, extraction temperature, pH and content of NaCl were found to have significant influence on extraction efficiency. The optimized conditions were 100 mum PDMS fiber, 30 min extraction time at 40 degrees C, with 3% NaCl content and no pH adjustment. The linear range was 0.5-100 mug l(-1) for most of the analytes. The limits of detection (LODs) ranged from 0.049 mug l(-1) (for parathion) to 0.301 mug l(-1) (for carbophenothion) and RSD% of repeatability at the 10 mug l(-1) level were all below 8%. Environmental water samples were analyzed, but none of the analytes was detected. The recovery of spiked water samples was from 75.3 to 102.6%.  相似文献   

15.
Kumar Malik A  Faubel W 《Talanta》2000,52(2):341-346
A simple and sensitive capillary electrophoretic method was developed for the separation and determination of Ziram and Zineb in boric acid buffer by direct UV absorbance detection at lambda=254 nm. The separation is dependent on pH and nature of the buffer. The detection limits (S/N=3) are 1.88x10(-6) mol/l (0.57 mug/ml) and 2.48x10(-6) mol/l (0.68 mug/ml) for Ziram and Zineb, respectively. The method was successfully applied to the analysis of wheat samples spiked with Ziram and Zineb.  相似文献   

16.
The formation of Fe(III) and Fe(II) chelates with pyridylazo and thiazolylazo reagents was examined. Optimum conditions for the formation of Fe(III) and Fe(II) chelates with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) were in detail evaluated. The LC method for simultaneous separation of Fe(III) and Fe(II) ions as 5-Br-PADAP chelates was evaluated using the PEEK column with C18 e.c. stationary phase and acetonitrile+water (90:10, v/v) eluent containing the 1x10(-3) mol l(-1) C(12)H(25)SO(3)Na, the ion-pairing reagent, pH 3.4-3.6. The simultaneous determination of 20-500 mug l(-1) Fe(II) ions (detection at 555 nm) and 20-500 mug l(-1) Fe(III) ions (detection at 585 nm) as 5-Br-PADAP chelates (for both ions, detection limit, 18 mug l(-1) for 20 mul loop) was established. The chromatographic method was applied to the water analysis. Although the present method is able to determine both Fe(III) and Fe(II) ions, the Fe(III) ion was not detected in all water samples. The Fe(II) was detected only in fresh gathered oligocene water at the level of 135 mug l(-1). The present method was used to the investigation of the distribution of Fe(III)/Fe(II) ions in aqueous and micellar solutions after action of external, ultrasonic field.  相似文献   

17.
Ramesh A  Rama Mohan K  Seshaiah K 《Talanta》2002,57(2):243-252
Preconcentration of Cd(II), Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) in saline matrices on Amberlite XAD-4 resins coated with ammonium pyrrolidine dithiocarbamate (APDC) and piperidine dithiocarbamate (pipDTC) and subsequent determination by inductively coupled plasma atomic emission spectrometry were studied. Parameters such as effect of pH, effect of HNO(3) concentration on elution of metals from resin were studied. The results show that Amberlite XAD-4 coated with APDC was more efficient in the recovery of metal ions compared with Amberlite XAD-4 coated with pipDTC, in the concentration range of 0.1-200 mug l(-1), for 1 g of Amberlite XAD-4 coated resin. The detection limits for Cd(II), Cu(II), Mn(II), Ni(II), Pb(II), Zn(II) are 0.1, 0.4, 0.3, 0.4, 0.6, 0.5 mug l(-1), respectively, for resin coated with APDC and 0.7, 1.0, 0.8, 0.9, 1.7 and 1.2 mug l(-1) for resin coated with pipDTC. The effect of diverse ions on the determination of aforesaid metals was studied. The method was applied for the determination of trace metal ions in artificial sea water and natural water samples. The results were compared with extraction AAS method.  相似文献   

18.
Soylak M  Divrikli U  Elci L  Dogan M 《Talanta》2002,56(3):565-570
A method for the preconcentration and determination of Cr(III), Co(II), Cu(II), Fe(III) and Pb(II) ions by atomic absorption spectrometry has been described. The method was based the collection of metal-calmagite complexes on a soluble cellulose nitrate membrane filter. The detection of the solution was obtained by flame atomic absorption spectrometry (FAAS) after completely dissolving the membrane with 0.5 ml of nitric acid at 80 degrees C. The metal ions were recovered quantitatively at pH 8. Various factors which affect the collection and determination of metal ions such as, type and size of the membrane filter, solvent for dissolution of the species retained on the filter were investigated. The detection limits were varying 0.06 mug l(-1) for Cu to 2.5 mug l(-1) for Cr. An application of the proposed method for analyte ions in mineral and tap water samples was also described with satisfactory results (recoveries >95%, relative standard deviations <10%).  相似文献   

19.
Zhou Y  Zhu G 《Talanta》1997,44(11):2041-2049
Measurement of iron and manganese is very important in evaluating the quality of natural waters. We have constructed an automated Fe(II), total dissolved iron(TDI), Mn(II), and total dissolved manganese(TDM) analysis system for the quality control of underground drinking water by reverse flow injection analysis and chemiluminescence detection(rFIA-CL). The method is based on the measurement of the metal-catalyzed light emission from luminol oxidation by potassium periodate. The typical signal is a narrow peak, in which the height is proportional to light emitted and hence to the concentration of metal ions. The detection limits were 3 x 10(-6)mug ml(-1) for Fe(II) and the linear range extents up to 1.0 x 10(-4) and 5 x 10(-6)mug ml(-1) for Mn(II) cover a linear range to 1.0 x 10(-4)mug ml(-1). This method was used for automated in-situ monitoring of total dissolved iron and total dissolved manganese in underground water during water treatment.  相似文献   

20.
A simple, sensitive and low cost, flow injection time-based method was developed for on-line preconcentration and determination of copper, lead and chromium(VI) at sub mug l(-1) levels in natural waters and biological samples. At the optimum pH, the on-line formed metal-ammonium pyrrolidine dithiocarbamate (APDC) complexes were sorbed on the unloaded commercial polyurethane foam (PUF), and subsequent eluted quantitatively by isobutylmethylketone and determined by flame atomic absorption spectrometry (FAAS). All chemical, and flow injection variables were optimized for the quantitative preconcentration of each metal and a study of interference level of various ions was also carried out. The system offered improved flexibility, low backpressure and applicability to all the studied metals. At a sample frequency of 36 h(-1) and a 60 s preconcentration time, the enhancement factor was 170, 131 and 28, the detection limit was 0.2, 1.8 and 2.0 mug l(-1), and the precision, expressed as relative standard deviation (s(r)), was 2.8 (at 10 mug l(-1)), 3.4 (at 50 mug l(-1)) and 3.6% (at 50 mug l(-1)) for Cu(II), Pb(II) and Cr(VI), respectively. The accuracy of the developed method was sufficient and evaluated by the analysis of certified reference materials and spiked water samples. Finally, the method was applied to the analysis of environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号