首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Sp?taru  F G B?nica 《The Analyst》2001,126(11):1907-1911
The system Co(II)-phenylthiourea (PTU)-borax buffer was investigated by cathodic stripping voltammetry (CSV) at a hanging mercury drop electrode. The results of the voltammetric measurements showed that the presence of both PTU and Co(II) gives rise to a new irreversible peak at about -1.5 V. Based upon our previous results obtained in the study of other sulfur compounds and the sulfide ion itself, the peak was ascribed to the catalytic hydrogen evolution superimposed on the reduction of the coordinated Co(II) ion. The catalyst itself is a Co(II) complex with the sulfide ion produced by the decomposition of the analyte during the deposition step. The influence of PTU and cobalt concentration, accumulation conditions and stripping parameters was investigated and complementary data on thiourea are included. The results showed that the measurement of the catalytic hydrogen evolution peak current can be used as a basis for a simple, accurate and rapid method for the determination of PTU within the concentration range 10-100 nM. The catalytic method is relatively free of interferences and could be a suitable alternative for cases in which the stripping peak due to mercury ion reduction in the accumulated mercury compound is disturbed by some interference.  相似文献   

2.
The process of reduction and reoxidation of cobalt(II) in thiocyanate solution at hanging mercury drop electrode has been investigated by cyclic voltammetric, chronoamperometric and anodic stripping methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M cobalt(II), the voltammogram on the first cycle at 0.05 V s?1 gives a cathodic peak at ?1.06 V with hysteresis on reversal, and an anodic wave with a peak potential of ?0.28 V and with two shoulders near ?0.38 and ?0.45 V, respectively. Multicyclic voltammograms under the same conditions give a cathodic peak at ?0.90 V and an anodic peak at ?0.45 V. The reduction and reoxidation of cobalt(II) in thiocyanate solution is accelerated by the reduction products of thiocyanate ion, cyanide and sulphide ions, which are produced during the electroreduction of cobalt(II).A mechanism of reduction and reoxidation of cobalt(II) which involves a chemical reduction of thiocyanate ion by electroreduced metallic cobalt and takes into account cyanide and sulphide ions is proposed. The hysteresis on the cathodic wave is caused by the difference in reduction potentials of cobalt(II)-thiocyanate and-cyanide complexes. Cyclic voltammetric study of cobalt(II) in perchlorate solution containing trace amounts of cyanide and sulphide ions supports these conclusions.  相似文献   

3.
The process of electroreduction of cobalt(II) in thiocyanate solutions at mercury electrodes has been investigated by cyclic voltammetric, chronoamperometric and polarographic methods. The influences of pH, the concentrations of Co(II) and SCN?, and the reduction products of SCN?, CN? and S2? on the reduction waves are described. The polarographic pre-wave is an autocatalytic in nature. A mechanism involving an initial reduction of Co(II)—SCN? at a mercury electrode followed by the chemical reduction of thiocyanate ion with the electroreduced metallic cobalt, and taking into account cyanide, sulfide, and hydroxide ions, the latter being produced by the hydrolysis of cyanide ion, is presented. Cobalt sulfide adsorbed at the electrode surface stimulates further reduction of Co(II)—CN? and —SCN? complexes, and depresses the interfering influence of Co(OH)2, which is reductively desorbed from the electrode surface with giving rise to an additional peak near ?1.08 V vs. SCE.  相似文献   

4.
When the hanging mercury drop electrode (HMDE) is placed in a solution which is 0.1 M in ammonia and 0.1 M in ammonium chloride and about 5 to 10×10?4M in cobalt(III)-hexamine or cobalt(II) chloride and in very small concentrations of bovine serum albumin (BSA), the protein is slowly adsorbed. When the adsorption is highly incomplete and the HMDE is kept for 30 s at about ?1.05 V vs. SCE, “active cobalt’ is deposited as a complex (Co(0)BSA). This is anodically oxidized at about 0.0 V to unstable Co(I)BSA). When the electrode is then rapidly (500 mV s?1) cathodized, a catalytic hydrogen current (ic) with peak at circa ?1.45 V is observed. In this way it is even possible to detect and estimate BSA in concentrations of the order of 10?12M. A detailed study has been made of the characteristics of ic under several conditions. “Active cobalt” on the HMDE does not affect Brdi?ka currents. Cystine and cysteine also yield the catalytic hydrogen current ic under the same conditions as does BSA.  相似文献   

5.
Tanaka S  Yoshida H 《Talanta》1988,35(11):837-840
The adsorptive voltammetry of lipoic acid and lipoamide was investigated with a hanging mercury drop electrode. These compounds produced a catalytic hydrogen wave at - 1.35 V in ammonia buffer solution containing cobalt(II), and the peak current increased with adsorptive accumulation at the electrode. Thus adsorptive voltammetry with the catalytic hydrogen wave could provide a sensitive method for determining trace amounts of lipoic acid and lipoamide. The calibration graphs for both compounds were linear over the range 2-10nM with accumulation for 5 min at -0.6 V, and the detection limit was ca. 0.5nM.  相似文献   

6.
Stripping voltammetry has been investigated for the determination of traces of ribonuclease, somatostatin, oxytocin, felypressin, insulin and oxidized glutathione at concentrations down to 1.5 × 10?9 M. Repeated cyclic potential scans with an initial cathodic scan were used after accumulation at +0.1 to –0.3 V vs. Ag/AgCl at a hanging mercury drop electrode. In presence of excess of copper(II) ion, the first two compounds yield a well-defined peak couple at ?0.5 to ?0.6 V, with cathodic and anodic peaks of equal height, the accumulated product being adsorbed in both its oxidized and reduced state. Oxytocin and felypressin first yield two unresolved cathodic peaks, one of which disappears in the second scan cycle. Oxidized glutathione yields a large cathodic peak but a small anodic peak because of desorption in the reduced state. Excess of copper(II) is reduced during the accumulation, so that the electrode is actually copper amalgam. The peaks obtained with copper(II) present are considered to be due to redox reactions of copper complexes formed with the cysteine parts of the molecules. These peaks are suitable for quantitative purposes; calibration equations are given. Without copper(II), the substances show stripping responses of different complexity and magnitude. Insulin gives usable stripping peaks only without copper ions.  相似文献   

7.
《Analytical letters》2012,45(8):1415-1429
Abstract

The paper reviews recent studies on the effect of addition of Ni(II) in the cathodic stripping voltammetry of the following compounds: cysteine, penicillamine, cystine, glutathione (either reduced or oxidised) and N-acetylcysteine. With the exception of N-acetylcysteine, the above compounds give a cathodic stripping peak at -0.6 V (vs. Ag/AgCl, 3 M KCl electrode) which is due to the catalytic reduction of nickel ion. Even in the case of the disulphides the actual catalyst is the thiol produced by the cleavage of the -S-S- bond during the accumulation step. The catalytic peak enables the detection of the analyte with a better selectivity than is obtained with the stripping peak due to the reduction of mercury thiolates. In addition, Ni(II) suppresses the mercury thiolate peak of ligands such as cysteine or penicillamine, but does not modify the behaviour of thiols with low complexing properties (such as N-acetylcysteine). Consequently, compounds such as cysteine and its N-acyl derivatives can be determined simultaneously by means of the catalytic peak and the mercury thiolate peak (at -0.4 V) respectively.  相似文献   

8.
Ertas FN  Fogg AG  Moreira JC  Barek J 《Talanta》1993,40(10):1481-1488
The behaviour of the copper complexes of glycyl-L-histidyl-glycine (GHG) was investigated using cyclic voltammetry and differential pulse voltammetry after their adsorptive accumulation on the surface of a hanging mercury drop electrode (HMDE). The nature of the observed cathodic and anodic peaks was established and optimum conditions were found for the differential pulse cathodic stripping voltammetric detemination of GHG at the 1 x 10(-8)M concentration level using adsorptive accumulation at -0.20 V vs. Ag/AgCl reference electrode and the cathodic stripping peak around -0.4 V (pH 8.3). This peak corresponds to the reduction of the Cu(I)-GHG complex formed at the HMDE surface as an intermediate in the reduction of Cu(II)-GHG to Cu(O)amalgam.  相似文献   

9.
《Electroanalysis》2005,17(17):1540-1546
The accumulation voltammetry of mercury(II) was investigated at a carbon paste electrode chemically modified with silica gel functionalized with 2,5‐dimercapto‐1,3,4‐thiadiazole (DTTPSG‐CPE). The repetitive cyclic voltammogram of mercury(II) solution in the potential range ?0.2 to +0.8 V (vs. Ag/AgCl), (0.02 mol L?1 KNO3 ; v=20 mV s?1) show two peaks one at about 0.0 V and other at 0.31 V. However, the cathodic wave peak, around 0.0 V, is irregular and changes its form in each cycle. This peak at about 0.0 V is the reduction current for mercury(II) accumulated in the DTTPSG‐CPE. The anodic wave peak at 0.31 V is well‐defined and does not change during the cycles. The resultant material was characterized by cyclic and differential pulse anodic stripping voltammetry performed with the electrode in differents supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, “cleaning” solution, possible interferences and other variables. The precision for six determinations (n=6) of 0.05 and 0.20 mg L?1 Hg(II) was 2.8 and 2.2% (relative standard deviation), respectively. The method was satisfactory and used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

10.
The reduction and reoxidation processes of the Fe(II)/Fe(Hg) system in thiocyanate solutions at stationary mercury electrodes have been investigated by cyclic voltammetric, anodic stripping and controlled potential electrolysis methods. In 0.1 M NaSCN and 0.4 M NaClO4 solution containing 1×10?3M Fe(II), the voltammogram on the first cycle at. 0.05 V s?1 gives two consecutive cathodic peaks near ?1.2 and ?1.39 V with a hysteresis on the reversal, and an anodic wave with two large peaks near ?0.58 and ?0.05 V and two small peaks near ?0.52 and ?0.43 V, respectively. The multicyclic voltammogram under the same conditions in the potential region between 0.00 and ?1.50 V gives a cathodic wave with a principal peak near ?1.02 V and two small peaks near ?0.02 and ?0.53 V, respectively, and an anodic wave with a principal peak near ?0.72 V, three small peaks near ?0.64, ?0.52 and ?0.40 V, and with a shoulder near ?0.05 V, respectively. The variation of the shape of the voltammogram on the second and subsequent runs is due to the formation of S2? and CN? during the process of electroreduction of Fe(II). A mechanism is proposed which involves an initial reduction of Fe(II)?SCN? produced in an activation step at a mercury electrode, followed by the chemical redox reaction of a part of Fe(0)?SCN? in the species giving FeS and CN?, and takes into account the influence of FeS and CN? on the further reduction and reoxidation of iron. Both FeS and CN? stimulate further reduction, and reoxidation of iron. The hysteresis of the cathodic wave on the first cycle arises from the fact that Fe(II) is reduced more easily at the mercury electrode covered with FeS than at a pure mercury electrode.  相似文献   

11.
Fogg AG  Ismail R  Ahmad R  Banica FG 《Talanta》1997,44(3):491-495
Previously, thiols have been determined indirectly by cathodic stripping voltammetry (CSV) after accumulation as their mercury and copper(I) salts. Following a previous report of the first use of the catalytic nickel peak (for the determination of cysteine), this paper reports the first use of the catalytic cobalt peak in CSV (for the determination of 2-mercaptobenzothiazole (MBT)): only a very ill-defined catalytic cobalt peak had been observed previously with cysteine, and was unreported. MBT is accumulated at pH 4 (Britton-Robinson buffer) as its cobalt(II) complex at -0.1 V, and is then determined indirectly by observing the reduction of the cobalt(II) in the complex at -0.95 V, i.e., with a much lowered overpotential: hydrated cobalt(II) is reduced at -1.2 V. The peak is catalytic because the thiol released on reduction of the complex complexes further cobalt ions and causes their reduction. The detection limit for the determination of MBT was calculated to be 2.5 x 10(-9) M (3sigma) using an accumulation time of 1 min. The sensitivity is about three times that obtained with the corresponding catalytic nickel peak.  相似文献   

12.
An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles.  相似文献   

13.
Banica FG  Fogg AG  Moreira JC 《Talanta》1995,42(2):227-234
Oxidized glutathione (GSSG) can be determined after previous accumulation on the HMDE at E > -0.2 V (vs. the Ag AgCl reference electrode). GSH is formed during the accumulation, possibly by a mercury-ion-assisted hydrolytic disproportionation of GSSG. In the subsequent cathodic scan GSH is released and catalyses the reduction of nickel ion, giving a peak located at -0.6 V. This enables the determination of GSSG by differential-pulse cathodic stripping voltammetry at pH 7.0 in the phosphate acetate or MOPS buffer containing 0.5-1.0 mM Ni(II). The detection limit is 10 nM. The calibration graph is linear even in the presence of small amounts of human serum albumin, HSA. However, HSA increases the detection limit (20 nM for 3 x 10(-4)% HSA). Acetyl-cysteine in small excess or Cu(II) present as reagent impurity do not interfere. Glutathione, cysteine and similar compounds, which accumulate as mercury salts and form stable nickel complexes, will interfere. The method is put forward as a novel alternative stripping voltammetric method to those involving accumulation and determination as mercury or copper salts and complexes, in the knowledge that it may have advantages in particular analytical situations. In particular the method discriminates against compounds which accumulate as mercury salts but which do not form stable nickel complexes.  相似文献   

14.
WANG Yuane  PAN Dawei  LI Xinmin  QIN Wei 《中国化学》2009,27(12):2385-2391
A bismuth/multi‐walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre‐plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)‐dimethylglyoxime complex at ?0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0×10?10?1.0×10?7 mol/L with a lower detection limit of 8.1×10?11 mol/L. The proposed method has been applied successfully to cobalt determination in seawater and lake water samples.  相似文献   

15.
《Analytical letters》2012,45(15):2965-2975
ABSTRACT

Albendazole is determined by differential-pulse adsorptive cathodic stripping voltammetry at a hanging mercury drop electrode using the reduction peak of its copper(II) complex at ?0.28V at an accumulation potential 0.0V vs. Ag/AgCl electrode. The optimum conditions of pH, accumulation potential and accumulation time were studied. The calibration graph for the determination of albendazole was linear in the range 3.0X10?8 - 9X10?7M with a relative standard deviation of 2.8%. The detection limit was 1.0X10?8M after 180s accumulation at 0.0V. The effect of common excipients and metal ions on the peak height of albendazole was studied. The presence of Cu2+ ions forms a stable complex with albendazole which is strongly adsorbed at the mercury electrode surface. The method was applied to the determination of the drug in commercially available dosage forms.  相似文献   

16.
钴(II)-丁二酮肟-亚硝酸盐体系极谱催化波的机理研究   总被引:1,自引:0,他引:1  
倪亚明  李玲  高小霞 《化学学报》1988,46(7):651-656
在氨性底液(PH8)中, 钴(II)-丁二酮肟(DMG)-亚硝酸盐体系产生高灵敏的极谱催化波. 利用吸附伏安法, 测定下限可达1×10^-^1^1mol.dm^-^3Co. 我们用多种电化学方法和紫外可见分光光度法证明, 吸附在汞电极表面的[NH4]2[Co(DMG)2(NO2)2]是有很高电活性的混配化合物, 在复杂的电还原过程中, 不仅Co(II)和DMG被催化还原, 而且NO2^-也被催化还原, 从而产生很大的催化电流, 本文再一次证明, “活性钴"在催化波的形成过程中起着重要的作用.  相似文献   

17.
Economou A  Fielden PR 《Talanta》1998,46(5):1137-1146
Ni(II) and Co(II) have been determined simultaneously by means of adsorptive cathodic stripping voltammetry (AdCSV) in a computerised flow injection system. The working electrode was a glassy carbon disk that was fitted in a wall-jet flow cell. The electrode was initially electrochemically coated with a mercury film at -1.0 V by injecting a Hg(II) solution in the flow stream. Then, the sample, containing Ni(II) and Co(II), was mixed on-line with a solution containing dimethylgyoxime (DMG) at pH 9 in order to selectively complex the metal ions and was injected in the flow system. After a number of successive injections during which accumulation took place under controlled potentiostatic conditions, the surface-bound complexes were reduced in ammonia buffer at pH 9 by a cathodic scan of the potential of the working electrode in the square wave mode and the current-potential response was recorded. Finally, the electrode surface was regenerated by a potentiostatic polarisation at -1.4 V in the same buffer. The apparatus could be easily converted for continuous flow accumulation in order to increase the sensitivity; in this mode of operation, instead of performing discrete injections, the sample was continuously pumped through the cell. Various parameters associated with the preconcentration, stripping and regeneration steps were optimised for the determination of Ni(II) and Co(II). The selectivity of the method was demonstrated for the analysis of high purity iron; the accuracy for the determination of Ni(II) and Co(II) was 11 and 3%, respectively while the coefficient of variation was 10 and 8%, respectively.  相似文献   

18.
Cyclic voltammetry (CV) and square-wave voltammetry (SWV) techniques have been used to study the binary complexes of Co(II), Ni(II) and Cu(II) with sulfamethazine (SMZ) at a static mercury drop electrode (SMDE) in 0.04 M Britton-Robinson (B-R) buffer. SMZ gave three peaks at 0.01, −1.32 and −1.55 V. Cu(II)-SMZ complex was recognized by a cathodic peak at −0.38 V. Ni(II)-SMZ complex was reduced at more positive potential (−0.77 V) than that of the hydrated Ni(II) ions (−1.08 V). Co(II)-SMZ complex is investigated at pH 7 and 8. The Co(II) complex at pH 7 is appeared as a shoulder at −1.19 V, whereas this peak becomes a well-separated form at pH 8. The study indicated that the SMZ serves as a catalyst in the reduction of Co(II) and Ni(II) ions. From electronic spectra data of the complexes, their stoichiometries of 1: 2 (metal-ligand) in aqueous medium are determined. The stability constants of the complexes are in agreement with the Irwing-Williams series (Co < Ni < Cu).  相似文献   

19.
A hanging copper amalgam drop electrode (HCADE) is used for the determination of traces of iodide by cathodic stripping voltammetry. The cathodic stripping peak of copper(I) iodide from the HCADE is better defined than that of mercury(I) iodide from a hanging mercury drop electrode. Optimum conditions and interferences are reported. With a 3-min deposition time at ?0.1 V vs. SCE, the calibration plot is linear up to 2 × 10?6 mol dm?3 iodide. The detection limit for iodide with the HCADE under voltammetric conditions is 4 × 10?8 mol dm?3; this is lowered to 8 × 10?9 mol dm?3 by using the differential pulse stripping technique.  相似文献   

20.
Svancara I  Vytras K  Hua C  Smyth MR 《Talanta》1992,39(4):391-396
The determination of mercury(II) ions can be achieved by monitoring the decrease in the oxidation peak of the tetraphenylborate ion in the presence of this metal ion at a carbon paste electrode. The reaction between mercury(II) and the tetraphenylborate ion results in the formation of diphenylmercury, thus providing the method with good selectivity over other metal ions. Using anodic stripping voltammetry in a neutral electrolyte, a linear dependence of the decrease of peak height was observed on increasing the mercury(II) concentration in the range 1 x 10(-6)-8 x 10(-9)M mercury(II). Zinc(II), cadmium(II), lead(II), nickel(II), cobalt(II), tin(II), potassium(I) and ammonium(I) ions did not interfere at a 1000-fold concentration excess. Iron(III) and chromium(III) did not interfere at a 250-fold and 50-fold concentration excess, respectively. Following masking procedures, copper(II), bismuth(III) and silver(I) did not interfere at a 100-fold concentration excess. The method can be used to determine the concentration of mercury(II) in natural waters contaminated by this metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号