首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
近十几年来,手性相转移催化剂在不对称催化反应中得到了广泛应用,如不对称烷基化、Michael加成、环氧化、羟醛缩合等[1].手性季铵盐是手性相转移催化剂中很重要的一类,有代表性的是Corey和Lygo等设计合成的蒽甲基金鸡纳碱季铵盐催化剂及Maruoka等设计的具有C2对称轴的螺环手性季铵盐催化剂[2].这些催化剂对一些反应有很高的对映选择性.我们结合这两类催化剂的特点,设计合成了手性催化剂T,化合物的结构经1H NMR,13C NMR,MS及元素分析确认.  相似文献   

2.
吉保明 《有机化学》2004,24(Z1):196
具有光学活性的1,2-二氨基环己烷及其衍生物作为手性辅剂或手性配体被广泛地用在催化不对称合成中[1-3].最近,我们在无溶剂的条件下,利用(1R,2R)-1,2-二氨基环己烷与2-萘酚、苯甲醛反应一锅法合成手性配体1的过程中,没有得到目标化合物1,得到了一种新的1,2-二氨基环己烷衍生物2.经元素分析,IR,1H NMR,13C NMR,MS以及X射线单晶衍射,确定了2的结构,结果表明2中含有五个手性中心.本文报道2的合成与晶体学表征(Scheme 1).  相似文献   

3.
在不对称催化研究中,手性膦配体得到了广泛的应用,已有许多高效的手性膦配体报导,并应用于工业化生产手性化合物[1].BINAP是其中典型代表之一,近年来人们对BINAP进行了各种修饰并将其应用于不对称催化反应也时有报导[2].我们课题组应用近年发明的新型手性钒催化剂成功地用于偶联反应,合成了7,7'-二取代BINOL[3],进而合成了7,7'-二取代的BINAP系列配体1~5.  相似文献   

4.
闫海龙 《有机化学》2022,(2):654-656
<正>高效手性催化剂的开发是催化不对称合成的关键,而优势手性骨架的设计与构建是高效催化剂开发的核心[1].因此,设计与开发新型的优势手性骨架及其衍生的高效手性催化剂,是催化不对称合成领域永恒的主题[2].轴手性骨架是一类公认的开发手性催化剂及配体的优势手性骨架[3],其中,轴手性联萘骨架应用最为广泛[4].与之相比,轴手性苯乙烯类手性骨架在不对称催化领域的应用十分有限[5-8],目前仅有零星的文献报道,  相似文献   

5.
过渡金属催化的卡宾对X-H(X=C,Si,N,O,S)键的插入反应是卡宾的一类特征反应,在有机合成中应用广泛[1].其中N-H键插入是构建C—N键的一种高效方法,特别是相应的不对称催化,对合成含氮手性化合物具有重要意义.近年来,人们以芳香胺或酰胺作为底物,在手性过渡金属催化剂的存在下,实现了卡宾对其N—H键高对映选择性的插入反应,从而发展了天然或非天然α-手性氨基酸衍生物合成的新方法[2].  相似文献   

6.
氮杂环丙烷衍生物是合成氨基酸及β-内酰胺等化合物的重要中间体,它也是某些具有生物活性的天然产物的重要组分[1,2].本文在前人工作的基础上[3],研究了手性元5-L-孟氧基-3-溴-2(5H)-呋喃酮(1)与脂肪胺2的不对称反应,得到含有两个新手性中心的氮杂环丙烷/稠合丁内酯化合物3,后者在LiAlH4/THF中还原得到手性产物4.通过元素分析,[α]20D,IR,1H NMR,13C NMR,MS以及X射线晶体衍射测定,确定了它们的结构.其合成路线如下:  相似文献   

7.
通过添加对映体拆分剂,合成了4种含膦手性的丙炔胺磷酸酯单体[HC帒CC H2NH(PO)R1R2].单体1,R1=OPh,R2=NC4H7COOCH3;单体2,R1=OPh,R2=NC4H7COOCH2CH3;单体3,R1=OPh,R2=NC4H7-COOC(CH3)3;单体4,R1=Ph,R2=NC4H7COOC(CH3)3].1H-NMR和31P-NMR表征可知对映体(单体1)不能被拆分剂拆分,而单体2、单体3、单体4通过拆分剂可以制得单一手性的磷化合物.以(nbd)Rh+[η6-C6H5B--(C6H5)3]为催化剂,以三氯甲烷为溶剂成功得到聚合物分子量范围在0.4×10-4~0.7×10-4,分子量分布在1.26~1.98范围的3种含手性膦侧基的丙炔胺类聚合物.比旋光度([α]D)、圆二色谱(CD)对聚合物的不同侧基及温度对光学活性的影响表明,聚合物具有良好的光学活性且能够形成单一方向的螺旋构象,说明膦手性在构建螺旋聚合物具有重要作用.  相似文献   

8.
目前,以廉价的氢气为氢源,由潜手性的酮不对称加氢是制备手性醇最好的方法之一[1].但存在手性催化剂的膦配体不稳定以及贵金属(Ru、 Rh)的流失等问题.硼氢化钠是一种较温和的氢化试剂,Mukaiyama等用具有C2对称轴的一系列光学活性的二亚胺钴配合物催化硼氢化钠不对称还原芳香酮,实现了以硼氢化钠为氢源的不对称氢化反应[2].  相似文献   

9.
孙伟  陈敏东等 《分子催化》2002,16(2):144-146
目前,以廉价的氢气为氢源,由潜手性的酮不对称加氢是制备手性醇最好的方法之一[1].但存在手性催化剂的膦配体不稳定以及贵金属(Ru、 Rh)的流失等问题.硼氢化钠是一种较温和的氢化试剂,Mukaiyama等用具有C2对称轴的一系列光学活性的二亚胺钴配合物催化硼氢化钠不对称还原芳香酮,实现了以硼氢化钠为氢源的不对称氢化反应[2].  相似文献   

10.
过渡金属磷酸盐是空旷骨架磷酸盐体系中重要的组成部分[1~3]. 几种由碱金属或碱土金属作为平衡阳离子的磷酸钴的研究已被报道[4~5]. 采用有机胺结构导向剂合成的具有空旷磷酸钴骨架结构的化合物亦见报道[6~9]. 本文采用中温水热合成技术合成出新颖的具有螺旋孔道的磷酸钴Co2(HPO4)2*H2O, 这种化合物在沸石拓扑集合中尚未发现结构对应成员.  相似文献   

11.
d-Glucono-1,5-lactone, an inexpensive carbohydrate, was elaborated into chiral building blocks readily applicable in synthesis via practical routes without involving any expensive reagents or tedious operations. Application of such chiral building blocks in total synthesis is then exemplified through construction of verbalactone and exophilin A. The latter compound has not been synthesized to date.  相似文献   

12.
We report the synthesis of chiral furanyl and pyranyl dienes 1 and 2 based on cycloalkenation of chiral tungsten alkynol complexes. These two dienes bear a chiral 1,3-dioxolane group to control diastereoselective Diels-Alder reactions with electron-deficient olefins. The chiral 1,3-dioxolane substituents of the cycloadducts were degraded into hydrogen atoms to make these molecules possess common furan and pyran rings. Dienes 1 and 2 are good building blocks for enantiopure forms of tricyclic oxygen compounds.  相似文献   

13.
Amino acids are fundamental building blocks, which have been extensively used in drug design and organic synthesis. However, nonnatural amino acids are relatively less studied. In this work, the authors report the first HFIP-promoted de novo synthesis of nonnatural α-arylated amino esters and dipeptide mimetics (27 examples, up to 99 % yield) from readily available amines, ethyl glyoxylate and electron-rich arenes under mild conditions, in which one C−C bond, one C−N bond and one chiral center were established simultaneously. The reaction was also performed on a gram scale, giving compound 4 a in 96 % yield. In addition, this protocol was successfully applied to the late-stage elaboration of drug molecules, such as tranylcypromine (TCP or PCPA) and troxipide. Interestingly, compound 4 h inactivated histone lysine specific demethylase 1 (LSD1) potently with an IC50 value of 0.296 μm . To the best of our knowledge, compound 4 h is the first LSD1 inhibitor derived from nonnatural α-arylated amino esters, and therefore could be used as a hit compound for the development of new LSD1 inhibitors. The synthesized nonnatural α-arylated amino esters and dipeptide mimetics as unique building blocks may have potential synthetic utilities.  相似文献   

14.
Covalent organic frameworks (COFs), covalently assembled from the condensation reactions of organic building blocks, are a fascinating class of functional porous materials with two- or three-dimensional crystalline organic structures. Generally, it is preferable to use symmetric and rigid building blocks to construct highly crystalline COFs with desired topology. On the other hand, the incorporation of chiral functional moieties in the building blocks would open up new applications such as asymmetric catalysis and chiral separation. This mini review highlights the principle strategies in the design and synthesis of chiral COFs. The interesting and potential applications of these chiral COFs for asymmetric catalysis and chiral separation are also summarized. This mini review aims to provide an up-to-date advancement of chiral COFs for asymmetric catalysis and chiral separation.  相似文献   

15.
Chiral building blocks are valuable intermediates in the syntheses of natural products and pharmaceuticals. A scalable chemoenzymatic route to chiral diketides has been developed that includes the general synthesis of α-substituted, β-ketoacyl N-acetylcysteamine thioesters followed by a biocatalytic cycle in which a glucose-fueled NADPH-regeneration system drives reductions catalyzed by isolated modular polyketide synthase (PKS) ketoreductases (KRs). To identify KRs that operate as active, stereospecific biocatalysts, 11 isolated KRs were incubated with 5 diketides and their products were analyzed by chiral chromatography. KRs that naturally reduce small polyketide intermediates were the most active and stereospecific toward the panel of diketides. Several biocatalytic reactions were scaled up to yield more than 100?mg of product. These syntheses demonstrate the ability of PKS enzymes to economically and greenly generate diverse chiral building blocks on a preparative scale.  相似文献   

16.
《中国化学快报》2023,34(4):107677
Chiral glycosyl lactone is an important class of bioactive compound and pharmaceutical intermediate in nature, especially for chiral lactones with 4 carbon atoms, which are very useful building blocks for synthesis of biologically interesting compounds. Herein, a selective dehydrogenation and solvent matched catalytic system under oxygen-free conditions was developed to try to achieve the one-step direct conversion of cyclic hemiacetal sugars toward their chiral glycosyl lactones. During the process, the inherent structural characteristics of sugar was efficiently utilized, and the transfer of its chiral centers was realized. Under the optimum condition, the corresponding lactones were successfully prepared from C4-C6 sugars with cyclic hemiacetal structure in acetonitrile. The reaction mechanism in acetonitrile was explored by the first principle density functional theory calculations and tracking reaction process. It was found that the high lactone yield in acetonitrile was due to the high proportion of α-conformation form among multiple tautomers in it. This selective dehydrogenation process may further extend the possibility of the preparation of chiral synthons from carbohydrates directly.  相似文献   

17.
A convergent biomimetic synthesis of hemibrevetoxin B from d-glucal and d-arabinose utilizes an electrophile-promoted cascade anti-Baldwin cyclization of an epoxy alcohol. The epoxy alcohol arises from a palladium-catalyzed coupling of a highly functionalized organozinc compound and an alkenyl iodide, which serve as two chiral building blocks of similar size and complexity. This first successful implementation of a cascade epoxy alcohol cyclization for the synthesis of marine polycyclic ether toxins proceeds in 39 steps and 4% overall yield.  相似文献   

18.
Han Xu  Feng Sha  Xin-Yan Wu 《Tetrahedron》2018,74(32):4331-4338
An organocatalytic enantioselective allylic alkylation of 5H-oxazol-4-ones with Morita-Baylis-Hillman carbonates has been developed. With 10?mol% of commercially available cinchonidine, a wide range of substituted 5H-oxazol-4-one derivatives were constructed in good-to-excellent yields with high diastereo- and enantioselectivities. The allylic alkylation adducts obtained are valuable precursors for the synthesis of chiral α-alkyl α-hydroxycarboxylic acid derivatives, which represent a series of versatile building blocks in many biologically active compounds.  相似文献   

19.
Chiral (salen)Al mu-oxo dimer 1 catalyzes the highly enantioselective conjugate addition of carbon-centered nucleophiles to alpha,beta-unsaturated silyl imides. Allyldimethylsilane-substituted imide 4 was identified as an optimal substrate, undergoing addition reactions with a variety of nitrile nucleophiles in high yield and enantiomeric excess. The silicon-containing products are synthetically useful chiral building blocks, as demonstrated by their application to an enantioselective total synthesis of the potent proteasome inhibitor (+)-lactacystin (2). Elaboration of lactam 5a to the natural product was effected in 12 steps and in 11% overall yield and proceeded through an unusual spiro beta-lactone intermediate (11). This compound was found to inhibit the chymotrypsin-like site of the 26S proteasome at similar levels to known inhibitor clasto-lactacystin beta-lactone (omuralide).  相似文献   

20.
A family of isoreticular chiral metal-organic frameworks (CMOFs) of the primitive cubic network topology was constructed from [Zn(4)(μ(4)-O)(O(2)CR)(6)] secondary building units and systematically elongated dicarboxylate struts that are derived from chiral Mn-Salen catalytic subunits. CMOFs 1-5 were synthesized by directly incorporating three different chiral Mn-Salen struts into the frameworks under solvothermal conditions, and they were characterized by a variety of methods, including single-crystal X-ray diffraction, PXRD, TGA, and (1)H NMR. Although the CMOFs 1 vs 2 and CMOFs 3 vs 4 pairs were constructed from the same building blocks, they exhibit two-fold interpenetrated or non-interpenetrated structures, respectively, depending on the steric sizes of the solvents that were used to grow the MOF crystals. For CMOF-5, only a three-fold interpenetrated structure was obtained due to the extreme length of the Mn-Salen-derived dicarboxylate strut. The open channel and pore sizes of the CMOF series vary systematically, owing to the tunable dicarboxylate struts and controllable interpenetration patterns. CMOFs 1-5 were shown to be highly effective catalysts for asymmetric epoxidation of a variety of unfunctionalized olefins with up to 92% ee. The rates of epoxidation reactions strongly depend on the CMOF open channel sizes, and the catalytic activities of CMOFs 2 and 4 approach that of a homogeneous control catalyst. These results suggest that, although the diffusion of bulky alkene and oxidant reagents can be a rate-limiting factor in MOF-catalyzed asymmetric reactions, the catalytic activity of the CMOFs with large open channels (such as CMOFs 2 and 4 in the present study) is limited by the intrinsic reactivity of the catalytic molecular building blocks. The CMOF catalysts are recyclable and reusable and retain their framework structures after epoxidation reactions. This work highlights the potential of generating highly effective heterogeneous asymmetric catalysts via direct incorporation of well-defined homogeneous catalysts into framework structures of MOFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号