首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Radial Flow in a Bounded Randomly Heterogeneous Aquifer   总被引:1,自引:0,他引:1  
Flow to wells in nonuniform geologic formations is of central interest to hydrogeologists and petroleum engineers. There are, however, very few mathematical analyses of such flow. We present analytical expressions for leading statistical moments of vertically averaged hydraulic head and flux under steady-state flow to a well that pumps water from a bounded, randomly heterogeneous aquifer. Like in the widely used Thiem equation, we prescribe a constant pumping rate deterministically at the well and a constant head at a circular outer boundary of radius L. We model the natural logarithm Y = lnT of aquifer transmissivity T as a statistically homogeneous random field with a Gaussian spatial correlation function. Our solution is based on exact nonlocal moment equations for multidimensional steady state flow in bounded, randomly heterogeneous porous media. Perturbation of these nonlocal equations leads to a system of local recursive moment equations that we solve analytically to second order in the standard deviation of Y. In contrast to most stochastic analyses of flow, which require that log transmissivity be multivariate Gaussian, our solution is free of any distributional assumptions. It yields expected values of head and flux, and the variance–covariance of these quantities, as functions of distance from the well. It also yields an apparent transmissivity, T a, defined as the negative ratio between expected flux and head gradient at any radial distance. The solution is supported by numerical Monte Carlo simulations, which demonstrate that it is applicable to strongly heterogeneous aquifers, characterized by large values of log transmissivity variance. The two-dimensional nature of our solution renders it useful for relatively thin aquifers in which vertical heterogeneity tends to be of minor concern relative to that in the horizontal plane. It also applies to thicker aquifers when information about their vertical heterogeneity is lacking, as is commonly the case when measurements of head and flow rate are done in wells that penetrate much of the aquifer thickness. Potential uses include the analysis of pumping tests and tracer test conducted in such wells, the statistical delineation of their respective capture zones, and the analysis of contaminant transport toward fully penetrating wells.  相似文献   

2.
The flow of fluids in heterogeneous porous media is modelled by regarding the hydraulic conductivity as a stationary random space function. The flow variables, the pressure head and velocity field are random functions as well and we are interested primarily in calculating their mean values. The latter had been intensively studied in the past for flows uniform in the average. It has been shown that the average Darcy's law, which relates the mean pressure head gradient to the mean velocity, is given by a local linear relationship. As a result, the mean head and velocity satisfy the local flow equations in a fictitious homogeneous medium of effective conductivity. However, recent analysis has shown that for nonuniform flows the effective Darcy's law is determined by a nonlocal relationship of a convolution type. Hence, the average flow equations for the mean head are expressed as a linear integro-differential operator. Due to the linearity of the problem, it is useful to derive the mean head distribution for a flow by a source of unit discharge. This distribution represents a fundamental solution of the average flow equations and is called the mean Green function G d (x). The mean head G d(x) is derived here at first order in the logconductivity variance for an arbitrary correlation function (x) and for any dimensionality d of the flow. It is obtained as a product of the solution G d (0)(x) for source flow in unbounded domain of the mean conductivity K A and the correction d (x) which depends on the medium heterogeneous structure. The correction d is evaluated for a few cases of interest.Simple one-quadrature expressions of d are derived for isotropic two- and three-dimensional media. The quadratures can be calculated analytically after specifying (x) and closed form expressions are derived for exponential and Gaussian correlations. The flow toward a source in a three-dimensional heterogeneous medium of axisymmetric anisotropy is studied in detail by deriving 3 as function of the distance from the source x and of the azimuthal angle . Its dependence on x, on the particular (x) and on the anisotropy ratio is illustrated in the plane of isotropy (=0) and along the anisotropy axis ( = /2).The head factor k * is defined as a ratio of the head in the homogeneous medium to the mean head, k *=G d (0)/G d= d –1. It is shown that for isotropic conductivity and for any dimensionality of the flow the medium behaves as a one-dimensional and as an effective one close and far from the source, respectively, that is, lim x0 k *(x) = K H/K A and lim x k *(x) = K efu/K A, where K A and K H are the arithmetic and harmonic conductivity means and K efu is the effective conductivity for uniform flow. For axisymmetric heterogeneity the far-distance limit depends on the direction. Thus, in the coordinate system of (x) principal directions the limit values of k * are obtained as . These values differ from the corresponding components of the effective conductivities tensor for uniform flow for = 0 and /2, respectively. The results of the study are applied to solving the problem of the dipole well flow. The dependence of the mean head drop between the injection and production chambers on the anisotropy of the conductivity and the distance between the chambers is analyzed.  相似文献   

3.
We propose a new method for the solution of stochastic unsaturated flow problems in randomly heterogeneous soils which avoids linearizing the governing flow equations or the soil constitutive relations, and places no theoretical limit on the variance of constitutive parameters. The proposed method applies to a broad class of soils with flow properties that scale according to a linearly separable model provided the dimensionless pressure head has a near-Gaussian distribution. Upon treating as a multivariate Gaussian function, we obtain a closed system of coupled nonlinear differential equations for the first and second moments of pressure head. We apply this Gaussian closure to steady-state unsaturated flow through a randomly stratified soil with hydraulic conductivity that varies exponentially with where =(1/) is dimensional pressure head and is a random field with given statistical properties. In one-dimensional media, we obtain good agreement between Gaussian closure and Monte Carlo results for the mean and variance of over a wide range of parameters provided that the spatial variability of is small. We then provide an outline of how the technique can be extended to two- and three-dimensional flow domains. Our solution provides considerable insight into the analytical behavior of the stochastic flow problem.  相似文献   

4.
We consider a general model of transient flow in media of random conductivity and storativity. The flow is driven by the spatially distributed source function (x, t) and the initial head distribution h 0(x). The function models sources and wells and can be deterministic, random or a sum of both. The deterministic source function corresponds to singularities of deterministic strength, whereas the random models the head boundary condition. In the latter case, is shown to be proportional to the hydraulic conductivity. The aim of the study is to analyze the feasibility of averaging the flow equations and of developing the mathematical model of average flow (AFM) without solving problems in detail. It is shown that the problem of averaging is reduced to deriving two constitutive equations. The first equation, the effective Darcy's law (EDL) stems from averaging Darcy's law at local scale. The second one is related to the medium ability to store a fluid and expresses the correlation between the storativity and head in terms of the mean head. Both relationships are required to be completely determined by the medium structure (conductivity and storativity statistical properties) and independent of the flow configuration (functions and h 0). We show that if one of the constitutive equations exists, the same is true respective to the second. This reduces the problem of averaging to the classic one of deriving the EDL. For steady flows the EDL is shown to exist for flows driven by sources (wells) of either deterministic flux or head boundary conditions. No EDL can be derived if both types of sources are present in the flow domain. For unsteady flows the EDL does not exist if the initial head correlates with the medium properties. For uncorrelated initial head distribution, its random residual (due to the measurement errors and scarcity of the data) has no impact on the EDL and is immaterial. For deterministic h 0, the only case for which the EDL exists is the flow by sources of deterministic discharge. For sources of given head boundary condition the EDL can be derived only for uniform initial head distribution. For all other cases, the EDL does not exist. The results of the study are not limited by usually adopted assumptions of weak heterogeneity and of stationarity of the formation random properties.  相似文献   

5.
Flow and transport parameters such as hydraulic conductivity, seepage velocity, and dispersivity have been traditionally viewed as well-defined local quantities that can be assigned unique values at each point in space-time. Yet in practice these parameters can be deduced from measurements only at selected locations where their values depend on the scale (support volume) and mode (instruments and procedure) of measurement. Quite often, the support of the measurements is uncertain and the data are corrupted by experimental and interpretive errors. Estimating the parameters at points where measurements are not available entails an additional random error. These errors and uncertainties render the parameters random and the corresponding flow and transport equations stochastic. The stochastic flow and transport equations can be solved numerically by conditional Monte Carlo simulation. However, this procedure is computationally demanding and lacks well-established convergence criteria. An alternative to such simulation is provided by conditional moment equations, which yield corresponding predictions of flow and transport deterministically. These equations are typically integro-differential and include nonlocal parameters that depend on more than one point in space-time. The traditional concept of a REV (representative elementary volume) is neither necessary nor relevant for their validity or application. The parameters are nonunique in that they depend not only on local medium properties but also on the information one has about these properties (scale, location, quantity, and quality of data). Darcy's law and Fick's analogy are generally not obeyed by the flow and transport predictors except in special cases or as localized approximations. Such approximations yield familiar-looking differential equations which, however, acquire a non-traditional meaning in that their parameters (hydraulic conductivity, seepage velocity, dispersivity) and state variables (hydraulic head, concentration) are information-dependent and therefore, inherently nonunique. Nonlocal equations contain information about predictive uncertainty, localized equations do not. We have shown previously (Guadagnini and Neuman, 1997, 1998, 1999a, b) how to solve conditional moment equations of steady-state flow numerically on the basis of recursive approximations similar to those developed for transient flow by Tartakovsky and Neuman (1998, 1999). Our solution yields conditional moments of velocity, which are required for the numerical computation of conditional moments associated with transport. In this paper, we lay the theoretical groundwork for such computations by developing exact integro-differential expressions for second conditional moments, and recursive approximations for all conditional moments, of advective transport in a manner that complements earlier work along these lines by Neuman (1993).  相似文献   

6.
Groundwater contamination of organics has recently become a problem of growing concern over the resulting health and environmental problems. In general, the multiphase system of nonaqueous phase liquid (NAPL), water and air has to be studied in order to realistically describe the movement of such materials in the subsurface. Numerous models have been developed to study multiphase flow and/or multispecies transport in porous media. However, using models to study the influence of medium heterogeneity on such flow and transport is only a recent event. It has been demonstrated for single-phase flow and transport in saturated and unsaturated media that the study of medium heterogeneity is amenable to stochastic analysis. In this paper, we extend our Eulerian–Lagrangian stochastic theory for single-phase transport to the problem of multiphase–multispecies transport in randomly heterogeneous media under the conditions that the flow is steady-state and the phases are in local chemical equilibrium. We present theoretical expressions to describe the first two conditional moments of the random concentration of any species in any phase. Though they reveal some of the fundamental properties and help gaining insight into the nature of the problem, these expressions cannot be evaluated without either high resolution Monte Carlo simulation or approximation (closure). Therefore, we propose two sets of workable approximations, one being a weak approximation and the other being a linearized pseudo-Fickian approximation. The former yields a nonlinear integro-differential equation for the first conditional moment and the latter yields a linear differential equation. Then the second moments can be computed from explicit expressions from either the weak or pseudo-Fickian approximation.  相似文献   

7.
Schwarze  H.  Jaekel  U.  Vereecken  H. 《Transport in Porous Media》2001,43(2):265-287
We present two- and three-dimensional calculations for the longitudinal and transverse macrodispersion coefficient for conservative solutes derived by particle tracking in a velocity field which is based on the linearized flow equation. The simulations were performed upto 5000 correlation lengths in order to reach the asymptotic regime. We used a simulation method which does not need any grid and therefore allows simulations of very large transport times and distances.Our findings are compared with results obtained from linearized transport, from Corrsin's Conjecture and from renormalization group methods. All calculations are performed with and without local dispersion. The variance of the logarithm of the hydraulic conductivity field was chosen to be one to investigate realistic model cases.While in two dimensions the linear transport approximation seems to be very good even for this high variance of the logarithmic hydraulic conductivity, in three dimensions renormalization group results are closer to the numerical calculations. Here Dagan's theory and the theory of Gelhar and Axness underestimate the transverse macrodispersion by far. Corrsin's Conjecture always overestimates the transverse dispersion. Local dispersion does not significantly influence the asymptotic behavior of the various approximations examined for two-dimensional and three-dimensional calculations.  相似文献   

8.
Ghanem  R.  Dham  S. 《Transport in Porous Media》1998,32(3):239-262
This study is concerned with developing a two-dimensional multiphase model that simulates the movement of NAPL in heterogeneous aquifers. Heterogeneity is dealt with in a probabilistic sense by modeling the intrinsic permeability of the porous medium as a stochastic process. The deterministic finite element method is used to spatially discretize the multiphase flow equations. The intrinsic permeability is represented in the model via its Karhunen–Loeve expansion. This is a computationally expedient representation of stochastic processes by means of a discrete set of random variables. Further, the nodal unknowns, water phase saturations and water phase pressures, are represented by their stochastic spectral expansions. This representation involves an orthogonal basis in the space of random variables. The basis consists of orthogonal polynomial chaoses of consecutive orders. The relative permeabilities of water and oil phases, and the capillary pressure are expanded in the same manner, as well. For these variables, the set of deterministic coefficients multiplying the basis in their expansions is evaluated based on constitutive relationships expressing the relative permeabilities and the capillary pressure as functions of the water phase saturations. The implementation of the various expansions into the multiphase flow equations results in the formulation of discretized stochastic differential equations that can be solved for the deterministic coefficients appearing in the expansions representing the unknowns. This method allows the computation of the probability distribution functions of the unknowns for any point in the spatial domain of the problem at any instant in time. The spectral formulation of the stochastic finite element method used herein has received wide acceptance as a comprehensive framework for problems involving random media. This paper provides the application of this formalism to the problem of two-phase flow in a random porous medium.  相似文献   

9.
The accuracy of the renormalization method for upscaling two-dimensional hydraulic conductivity fields is investigated, using two canonical 2 × 2 blocks: a checkerboard geometry and a geometry in which three of the cells have conductivity K 1 and the other has conductivity K 2. The predictions of the renormalization algorithm are compared to the arithmetic, harmonic and geometric means, as well as to theoretical predictions and finite element calculations. For the latter geometry renormalization works well over the entire range of the conductivity ratio K 2/K 1, but for the checkerboard geometry the error becomes unbounded as the conductivity ratio grows.  相似文献   

10.
For describing the mass transfer processes in channels, Taylor's dispersion theory is widely used. This theory makes it possible, with asymptotic rigor, to replace the complete diffusion (heat conduction) equation with a convective term that depends on the coordinate transverse to the flow by an effective diffusion (dispersion) equation with constant coefficients, averaged over the channel cross-section. In numerous subsequent studies, Taylor's theory was generalized to include more complex situations, and novel algorithms for constructing the dispersion equations were proposed. For thin film flows a theory similar to Taylor's leads to a matrix of dispersion coefficients.In this study, Taylor's theory is extended to film flows with a non-one-dimensional velocity field and anisotropic diffusion tensor. These characteristics also depend to a considerable extent on the spatial coordinates and time. The dispersion equations obtained can be simplified in regions in which the effective diffusion coefficient tensor changes sharply.  相似文献   

11.
A theoretical model which allows us to determine the permeability of a fibrous porous medium is proposed. Fibres are assumed to be parallel and nonuniform in space and material with a low volume fraction of fibres is considered. The model includes two geometric parameters: the diameter of fibres and the diameter of caverns or fissures inside the bundle of fibres. The tensor of permeability of the porous medium is determined based upon a generalized cell model. The components of permeability tensor depend on two parameters which are determined using experimental data and least-squares approximation. The influence of the geometric parameters on components of permeability tensor is discussed.  相似文献   

12.
Zhu  W. Q.  Deng  M. L. 《Nonlinear dynamics》2004,35(1):81-100
A strategy for designing optimal bounded control to minimize theresponse of quasi non-integrable Hamiltonian systems is proposed basedon the stochastic averaging method for quasi non-integrable Hamiltoniansystems and the stochastic dynamical programming principle. Theequations of motion of a controlled quasi non-integrable Hamiltoniansystem are first reduced to an one-dimensional averaged Itô stochasticdifferential equation for the Hamiltonian by using the stochasticaveraging method for quasi non-integrable Hamiltonian systems. Then, thedynamical programming equation for the control problem of minimizing theresponse of the averaged system is formulated based on the dynamicalprogramming principle. The optimal control law is derived from thedynamical programming equation and control constraints without solvingthe equation. The response of optimally controlled systems is predictedthrough solving the Fokker–Planck–Kolmogrov (FPK) equation associatedwith completely averaged Itô equation. Finally, two examples are workedout in detail to illustrate the application and effectiveness of theproposed control strategy.  相似文献   

13.
The paper presents an analytical construction of effective two-phase parameters for one-dimensional heterogeneous porous media, and studies their properties. We base the computation of effective parameters on analytical solutions for steady-state saturation distributions. Special care has to be taken with respect to saturation and pressure discontinuities at the interface between different rocks. The ensuing effective relative permeabilities and effective capillary pressure will be functions of rate, flow direction, fluid viscosities, and spatial scale of the heterogeneities.The applicability of the effective parameters in dynamic displacement situations is studied by comparing fine-gridded simulations in heterogeneous media with simulations in their homogeneous (effective) counterparts. Performance is quite satisfactory, even with strong fronts present. Also, we report computations studying the applicability of capillary limit parameters outside the strict limit.  相似文献   

14.
In 1997, H. Nozaki and M. Taya found numerically that for any regular polygonal inclusion except for a square, both the Eshelby tensor at the center and the average Eshelby tensor over the inclusion domain are equal to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. Then in 2001, these remarkable properties were mathematically justified by Kawashita and Nozaki. In this paper, a more radical property is presented for a rotational symmetrical inclusion: For any N-fold (N is an integer greater than 2 and unequal to 4) rotational symmetrical inclusion, the arithmetic mean of the Eshelby tensors at N rotational symmetrical points in the inclusion is the same as the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion. It follows that the Eshelby tensor at the center and the average Eshelby tensor over the rotational symmetrical inclusion domain are identical to the Eshelby tensor for a circular inclusion and independent of the orientation of the inclusion as well. This paper shows that although the Eshelby property does not hold for non-ellipsoidal inclusions, the Eshelby tensor for a rotational symmetrical inclusion satisfies the arithmetic mean property. Mathematics Subject Classifications (2000) 73C02.  相似文献   

15.
One of the techniques to calculate the effective property of a heterogeneous medium is the effective medium theory. The present paper presents a general mathematical formulation for the effective medium approximation using a self-consistent choice of the effective permeability, to apply it to the case of a general anisotropic 2D medium and to the case of a 3D isotropic medium with randomly oriented ellipsoidal inclusions. The 2D results are compared with analytical results and with a homogenization technique with good result. The 3D correlations are used to derive percolation thresholds in two-phase systems with a large permeability contrast, which are compared to numerical results from the literature, also with good results.  相似文献   

16.
Wang  Zhihe  Xu  Chaoshui  Dowd  Peter 《Transport in Porous Media》2019,126(1):97-114

The spatial distribution of hydrogeological properties is essentially heterogeneous. Heterogeneity can be characterized quantitatively using geostatistics, which conventionally assumes that the stochastic process is stationary. However, growing evidence indicates that the spatial variability has the multiscale self-similarity characteristics and can be better characterized using non-stationary model but with statistically homogeneous increments. A general framework is developed in this work to conduct the uncertainty quantification analysis by using truncated power variogram model, which can explicitly account for measurement scale, observation scale, and window scale. The effect of the multiscale characteristics of the hydrogeological properties on the uncertainty and the consequential risk associated with the groundwater flow process is investigated. A synthetic two-dimensional saturated steady-state groundwater flow problem is used to evaluate the performance to predict the flow field distribution. For comparative purposes, the evaluation is based on both the truncated power and the traditional variogram models when the underlying porous medium is a random fractal field. The results show that the truncated power variogram model can perform the uncertainty quantification more accurately, and the adoption of traditional variogram model tends to result in a smoother estimation on the flow field and underestimate the uncertainty associated with the hydraulic head prediction. Upscaling is generally inevitable to avoid predictive uncertainty underestimation when the underlying random field exhibits multiscale characteristics.

  相似文献   

17.
The numerical simulation of flow through heterogeneous formations requires the assignment of the conductivity value to each numerical block. The conductivity is subjected to uncertainty and is modeled as a stationary random space function. In this study a methodology is proposed to relate the statistical moments of the block conductivity to the given moments of the continuously distributed conductivity and to the size of the numerical blocks. After formulating the necessary conditions to be satisfied by the flow in the upscaled medium, it is found that they are obeyed if the mean and the two-point covariance of the space averaged energy disspation function over numerical elements in the two media, of point value and of upscaled conductivity, are identical. This general approach leads to a systematic upscaling procedure for uniform average flow in an unbounded domain. It yields the statistical moments of upscaled logconductivity that depend only on those of the original one and on the size and shape of the numerical elements.The approach is applied to formations of isotropic heterogeneity and to isotropic partition elements. After a general discussion based on dimensional analysis, the procedure is illustrated by using a first-order approximation in the logconductivity variance. The upscaled logconductivity moments (mean, two-point covariance) are computed for two and three dimensional flows, isotropic heterogeneous media and elements of circular or spherical shape. The asymptotic cases of elements of small size, which preserve the point value conductivity structure on one hand, and of large blocks for which the medium can be replaced by one of deterministic effective properties, on the other hand, are analyzed in detail. The results can be used in order to generate the conductivity of numerical elements in Monte Carlo simulations.Nomenclature C covariance - e rate of dissipation of mechanical energy per unit weight of fluid - E total rate of energy dissipation in the flow domain - H overlap function - K hydraulic conductivity - K G geometrical mean of conductivity - I integral scale - J=P mean head gradient - L characteristic size of - l characteristic size of also diameter of circle and sphere - n number of dimensions - P pressure head - Q total fluid discharge - S A ,S B inlet and outlet boundaries of flow domain - v velocity - Y logconductivity - characteristic scale of flow nonuniformity - autocorrelation function - 2 variance - flow domain - partition element Overlining space averaged over - Ã upscaled quantity - â Fourier transform ofa  相似文献   

18.
利用小参数摄动法,建立了随机结构在随机激励下的二阶振动随机势能泛函。并由此推导了二阶摄动随机变原理,作为应用,建立了随机有限元的计算列式。  相似文献   

19.
We study the evolution of the water–oil front for two-phase, immiscible flow in heterogeneous porous media. Our analysis takes into account the viscous coupling between the pressure field and the saturation map. Although most of previously published stochastic homogenization approaches for upscaling two-phase flow in heterogeneous porous media neglect this viscous coupling, we show that it plays a crucial role in the dynamics of the front. In particular, when the mobility ratio is favorable, it induces a transverse flux that stabilizes the water–oil front, which follows a stationary behavior, at least in a statistical sense. Calculations are based on a double perturbation expansion of equations at first order: the local velocity fluctuation is defined as the sum of a viscous term related to perturbations of the saturation map, on one hand, plus the perturbation induced by the heterogeneity of the permeability field with a base-state saturation map, on the other hand. In this companion paper, we focus on flows in isotropic media. Our results predict the dynamics of the water–oil front for favorable mobility ratios. We show that the statistics of the front reach a stationary limit, as a function of the geostatistics of the permeability field and of the mobility ratio evaluated across the front. Results of numerical experiments and Monte-Carlo analysis confirm our predictions.  相似文献   

20.
埋地管道随机振动的摄动分析   总被引:2,自引:0,他引:2  
帅健  许葵 《力学季刊》2003,24(2):244-249
埋地管道的材料特性和沿线的土壤性质存在差异,对这种差异性采用随机参数描述有一定的合理性,因此在管道的随机振动分析中考虑结构参数的随机性是必要的,对于管道的抗震设计具有现实意义。对于在空间相关的地震地面随机激励下的埋地管道,将结构参数看作是随机变量,采用摄动分析法,推导了随机响应的相关函数和功率谱密度函数的解析表达式,大大方便了工程应用。针对某输油管道,给出了计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号