首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Violet crystals of [Cu(en)2][Pt(CN)4] and blue crystals of [Cu(dmen)2][Pt(CN)4] were crystallized from the water-methanol solution containing CuCl2·2H2O, ethylenediamine (en) or N,N-dimethylethylenediamine (dmen) and K2[Pt(CN)4]·3H2O. Both compounds were characterized using elemental analysis, infrared and UV-VIS spectroscopy, magnetic measurements, specific heat measurements and thermal analysis. X-ray structure analysis revealed chain-like structure in both compounds. The covalent chains are built of Cu(II) ions linked by [Pt(CN)4]2− anions in the [111] and [101] direction, respectively. The Cu(II) atoms are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate ligands L with average Cu-N distance of 2.022(2) and 2.049(4) Å, respectively. Axial positions are occupied by two nitrogen atoms from bridging [Pt(CN)4]2− anions at longer Cu-N distance of 2.537(2) and 2.600(5) Å, respectively. Both materials are characterized by the presence of weak antiferromagnetic exchange coupling. Despite the one-dimensional (1D) character of the structure, the analysis of magnetic properties and specific heat at very low temperatures shows that [Cu(en)2][Pt(CN)4] behaves as two-dimensional (2D) spatially anisotropic square lattice Heisenberg magnet, while more pronounced influence of interlayer coupling is observed in [Cu(dmen)2][Pt(CN)4].  相似文献   

2.
Violet (1) and blue (2) polymorphous modifications of [Cu(men)2Pt(CN)4]n (men = N-methyl-1,2-diaminoethane) have been prepared and investigated by IR and UV-vis spectroscopy, thermal analysis, measurement of magnetic data and X-ray structural analysis. Both modifications are formed by similar but differently packed zigzag chains, which consist of [Cu(men)2]2+ moieties bridged by two trans arranged cyanido groups of [Pt(CN)4]2− units. The Cu(II) atoms in both structures are hexacoordinated by four nitrogen atoms in the equatorial plane from two molecules of bidentate men ligands with the average Cu-N(Me) and Cu-N(H2) bond lengths of 2.046(8) and 2.008(8) Å, respectively, and by two nitrogen atoms from bridging cyanido groups in the axial positions at average distance of 2.50(7) Å. Broad nearly symmetric bands observed in the UV-vis spectra of 1 and 2 of 2B1g → 2Eg transitions are consistent with a deformed octahedral coordination of the CuN6 chromophoric groups. One and two ν(CN) absorption bands observed in the IR spectra of 1 and 2, respectively, are in agreement with different local symmetries of [Pt(CN)4]2− units and different Cu-N(cyanido) bond lengths in these polymorphs and are subject of discussion on the spectral-structural correlations in 1D compounds. The complexes are stable up to 238 °C when their two-stage thermal decompositions start and ending up with a mixture of CuO and metallic Pt as the most probable final thermal decomposition products. The temperature dependence of the magnetic susceptibility suggests the presence of a weak antiferromagnetic exchange coupling between Cu(II) atoms in 1, J/hc = −0.17 cm−1 and in 2, J/hc = −1.3 cm−1.  相似文献   

3.
The salt, [N(CH3)4][IO2F2], was prepared from [N(CH3)4][IO3] and 49% aqueous HF, and characterized by Raman, infrared, and 19F NMR spectroscopy. Crystals of [N(CH3)4]2[IO2F2][HF2] were obtained by reduction of [N(CH3)4][cis-IO2F4] in the presence of [N(CH3)4][F] in CH3CN solvent and were characterized by Raman spectroscopy and single-crystal X-ray diffraction: C2/m, a = 14.6765(2) Å, b = 8.60490(10) Å, c = 13.9572(2) Å, β = 120.2040(10)°, V = 1523.35(3) Å3, Z = 4 and R = 0.0192 at 210 K. The crystal structure consists of two IO2F2 anions that are symmetrically bridged by two HF2 anions, forming a [F2O2I(FHF)2IO2F2]4− dimer. The symmetric bridging coordination for the HF2 anion in this structure represents a new bonding modality for the bifluoride anion.  相似文献   

4.
Single crystals of [Cu(men)2(BF4)2] (men = N-methyl-1,2-diaminoethane) (1) were isolated from an aqueous-ethanolic system Cu2+-men-BF4. The crystal structure of 1 consists of [Cu(men)2(BF4)2] molecules. Copper ion exhibits usual distorted octahedral coordination; there are two coordinated men ligands in the equatorial plane with Cu-N bonds of 2.0451(12) and 2.0035(12) Å, while the axial positions are occupied by fluorine atoms from BF4 anions with Cu-F bond of 2.5091(11) Å. The packing of the [Cu(men)2(BF4)2] molecules is governed by N-H?F type hydrogen bonds. The measured ESR spectrum corroborated the presence of Jahn-Teller anisotropy of Cu(II) with g|| = 2.20 and g = 2.06. The magnetic studies in the temperature range 300-2 K reveal that 1 follows the Curie-Weiss law with parameters = 2.1612(1) and θ = −0.233(1) K suggesting the presence of weak antiferomagnetic interactions.  相似文献   

5.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

6.
A new 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P21/n with a=8.042(2) Å, b=20.004(4) Å, c=10.103(2) Å, and β=90.42(3)°. The anionic [B7O10(OH)3]n2n layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H3N(CH2)6NH3]2+ cations are located.  相似文献   

7.
Molecular structure, ionic mobility and phase transitions in six- and seven-coordinated ammonium oxofluoroniobates (NH4)2NbOF5 and (NH4)3NbOF6 were studied by 19F, 1H NMR and DFT calculations. Equatorial fluorine atoms (Feq) in [NbOF5]2− and [NbOF6]3− are characterized by high 19F NMR chemical shifts while axial fluorine atoms (Fax) have those essentially lower. The high-temperature ionic mobility in (NH4)2NbOF5 does not stimulate the ligand exchange Feq ↔ Fax, whereas it is observed in (NH4)3NbOF6 as pseudorotation typical for seven-coordinated polyhedra. The transformation of pentagonal bipyramidal structure (BP) of [NbOF6]3− into capped trigonal prismatic (CTP) one takes place during the phase transition (PT) at 260 K. The PT of order-disorder type in (NH4)2NbOF5 is accompanied by transition of anionic sublattice to a rigid state. The 19F and 1H NMR data corroborate the independent motions of NH4 groups and anionic polyhedra in (NH4)2NbOF5 while they are coordinated in (NH4)3NbOF6.  相似文献   

8.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

9.
The preparation by hydrothermal reaction and the crystal structure of the iron(III) carboxyethylphosphonate of formula [NH4][Fe2(OH){O3P(CH2)2CO2}2] is reported. The green-yellow compound crystallizes in the monoclinic system, space group Pc(n.7), with the following unit-cell parameters: a=7.193(3) Å, b=9.776(3) Å, c=10.17(4) Å and β=94.3(2)°. It shows a typical layered hybrid organic-inorganic structure featuring an alternation of organic and inorganic layers along the a-axis of the unit cell. The bifunctional ligand [O3P(CH2)2CO2]3− is deprotonated and acts as a linker between adjacent inorganic layers, to form pillars along the a-axis. The inorganic layers are made up of dinuclear Fe(III) units, formed by coordination of the metal ions with the oxygen atoms originating from the [O3P−]2− end of the carboxyethylphosphonate molecules, the oxygen atoms of the [−CO2] end group of a ligand belonging to the adjacent layer and the oxygen atom of the bridged OH group. Each Fe(III) ion is six-coordinated in a very distorted octahedral environment. Within the dimer the Fe-Fe separation is found to be 3.5 Å, and the angle inside the [Fe(1)-O(11)-Fe(2)] dimers is ∼124°. The resulting 3D framework contains micropores delimited by four adjacent dimers in the (bc) planes of the unit cell. These holes develop along the a-direction as tunnel-like pores and [NH4]+ cations are located there. The presence of the μ-hydroxo-bridged [Fe(1)-O(11)-Fe(2)] dimers in the lattice is also responsible for the magnetic behavior of the compound at low temperatures. The compound contains Fe3+ ions in the high-spin state and the two Fe(III) ions are antiferromagnetic coupled. The J/k value of −16.3 K is similar to those found for other μ-hydroxo-bridged Fe(III) dimeric systems having the same geometry.  相似文献   

10.
A new compound, Na2Zn5(PO4)4, was identified in the system ZnONa2OP2O5 and high-quality crystal was obtained by the melt method. The crystal structure of this compound was solved by direct method from single crystal X-ray diffraction data. The structure was then refined anisotropically using a full-matrix least square refinement on F2 and the refinement converged to R1=0.0233 and wR2=0.0544. This compound crystallizes in the orthorhombic system with space group Pbcn, lattice parameters a=10.381(2) Å, b=8.507(1) Å, c=16.568(3) Å and Z=4. The structure is made up of 3D [Zn5P4O16]n2n covalent framework consisting of [Zn4P4O16]n4n layers. The powder diffraction pattern of Na9Zn21(PO4)17 is explained by simulating a theoretical pattern with NaZnPO4 and Na2Zn5(PO4)4 in the molar ratio of 1:4 and then by Rietveld refinement of experimental pattern. Na2Zn5(PO4)4 melts congruently at 855 °C and its conductivity is 5.63×10−9 S/cm.  相似文献   

11.
The reaction of VOF3 with (C2H5)4NF, (CH3)4NCl and (C4H9)4NBr salts in anhydrous CH3CN produced new complexes with the anion general formula [VOF3X] in that (X = F, Cl, Br). These were characterized by elemental analysis, IR, UV/Visible and 19F NMR spectroscopy. The optimized geometries and frequencies of the stationary point are calculated at the B3LYP/6-311G level of theory. Theoretical results showed that the VX (X = F, Cl, Br) bond length values for the [VOF3X] in compounds 1-3 are 1.8247, 2.4031 and 2.5595 Å, respectively. Also, the VF5 bond length values in [VOF3X] are 1.824, 1.812 and 1.802 Å, respectively. These results reveal that the bond order for VX bonds decrease from compounds 1 to 3, while for VF5 bonds, the bond orders increase. It can be concluded that the decrease of VX bonds lengths and the increase of VF5 bond lengths in compounds 1-3 result from the increase of the hyperconjugation from compounds 1 to 3. Harmonic vibrational frequencies and infrared intensities for VOF4, VOF3Cl and VOF3Br are studied by means of theoretical and experimental methods. The calculated frequencies are in reasonable agreement with the experiment values. These data can be used in models of phosphoryl transfer enzymes because vanadate can often bind to phosphoryl transfer enzymes to form a trigonal-bipyramidal structure at the active site.  相似文献   

12.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

13.
Two new quaternary salts, [Hg3Te2][UCl6] and [Hg4As2][UCl6], have been synthesized and their structures determined by single-crystal X-ray diffraction analysis. [Hg3Te2][UCl6] is the product of a reaction involving UCl4, HgCl2, and HgTe at 873 K. The compound crystallizes in space group P21/c of the monoclinic system. [Hg4As2][UCl6] results from the reaction of U, Hg2Cl2, and As at 788 K. It crystallizes in space group Pbca of the orthorhombic system. [Hg3Te2][UCl6] has a two-dimensional framework of layers, whereas [Hg4As2][UCl6] has a three-dimensional framework of layers interconnected by Hg atoms linearly bonded to As atoms. Both framework structures contain discrete [UCl6]2− anions between the layers. [Hg3Te2][UCl6] exhibits temperature-independent paramagnetism. The optical absorption spectra of these compounds display f-f transitions.  相似文献   

14.
A novel two-dimensional network bimetallic Fe Au spin crossover coordination polymer based on 3-phenylpyridine-coordinated iron centers and linear gold cyanide bridges {Fe(3-phenylpyridine)2[Au(CN)2]2}n (1), has been synthesized. The compound is characterized by elemental analysis, IR, single-crystal X-ray analysis at 300 and 90 K and magnetic measurements. The FeII ions in 1 have octahedral FeIIN6 coordination geometries, which are linked by [Au(CN)2] units at the equatorial plane to form a polymeric 2D sheet architecture. The two pyridine rings coordinate in axial position. Variable-temperature (2-300 K) magnetic susceptibility measurements of 1 were performed to determine the spin transition behavior. SQUID data show that high and low spin states exist in a 1:1 ratio at 90 K. However, only one kind of FeII atom is apparent crystallographically at 90 K, indicating that the high and low spin sites are disordered in the polymeric 2D framework.  相似文献   

15.
Two solid-state coordination compounds of rare earth metals with glycin, [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O and [ErY(Gly)6(H2O)4](ClO4)6·5H2O were synthesized. The low-temperature heat capacities of the two coordination compounds were measured with an adiabatic calorimeter over the temperature range from 78 to 376 K. [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O melted at 342.90 K, while [ErY(Gly)6(H2O)4](ClO4)6·5H2O melted at 328.79 K. The molar enthalpy and entropy of fusion for the two coordination compounds were determined to be 18.48 kJ mol−1 and 53.9 J K−1 mol−1 for [Gd4/3Y2/3(Gly)6(H2O)4](ClO4)6·5H2O, 1.82 kJ mol−1 and 5.5 J K−1 mol−1 for [ErY(Gly)6(H2O)4](ClO4)6·5H2O, respectively. Thermal decompositions of the two coordination compounds were studied through the thermogravimetry (TG). Possible mechanisms of the decompositions are discussed.  相似文献   

16.
The polymeric compounds consisting of the man-made element, americium, and gold and silver dicyanides were prepared under mild hydrothermal conditions at 120 °C. It was found that the americium ion and the transition metal ions are interconnected through cyanide bridging in the compounds. Given the similarities in the radii of americium and neodymium, crystals of the latter were also characterized for comparison purposes. The four compounds are isostructural and crystallize in the hexagonal space group, P63/mcm, with only slight differences in their unit cell parameters. Crystallographic data (MoKα, λ=0.71073 Å): Am[Ag(CN)2]3·3H2O (1), a=6.7205(10) Å, c=18.577(3) Å, V=726.64(19), Z=2; Am[Au(CN)2]3·3H2O (2),a=6.666(2) Å, c=18.342(3) Å, V=705.9(4), Z=2; Nd[Ag(CN)2]3·3H2O (3), a=6.7042(4) Å, c=18.6199(14) Å, V=724.77(8), Z=2; and Nd[Au(CN)2]3·3H2O (4), a=6.6573(13) Å, c=18.431(4) Å, V=707.2(2), Z=2. The coordination around the Am and/or Nd consists of six N-bound CN groups resulting in a trigonal prismatic arrangement. Three capping oxygen atoms of coordinated water molecules complete the tricapped trigonal prismatic coordination environment, providing a total coordination number of nine for the f-elements. Raman spectroscopy, which compliments the structural analyses, reveals that the four compounds display strong signals in the νCN stretching region. When compared with KAg(CN)2 or KAu(CN)2, the νCN stretching frequencies for these compounds blue-shift due to bridging of the dicyanometallate ions with the f-element ions. There is subsequent reduction in electron density at the cyanide center. Compared with the silver systems, the νCN frequency appears at higher energy in the gold dicyanide complexes. This shift is consistent with the structural data where the carbon-nitrogen bond distance is found to be shorter in the gold dicyanides.  相似文献   

17.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

18.
The compounds M[PO2(OH)2]2·2H2O (M=Mg, Mn, Fe, Co, Ni, Zn, Cd) were prepared from super-saturated aqueous solutions at room temperature. Single-crystal X-ray structure investigations of members with M=Ni, Zn, Cd were performed at 295 and 120 K. The space-group symmetry is P21/n, Z=2. The unit-cell parameters are at 295/120 K for M=Ni: a=7.240(2)/7.202(2), b=9.794(2)/9.799(2), c=5.313(1)/5.285(1) Å, β=94.81(1)/94.38(1)°, V=375.4/371.9 Å3; M=Zn: a=7.263(2)/7.221(2), b=9.893(2)/9.899(3), c=5.328(1)/5.296(2) Å, β=94.79(1)/94.31(2)°, V=381.5/377.5 Å3; M=Cd: a=7.356(2)/7.319(2), b=10.416(2)/10.423(3), c=5.407(1)/5.371(2) Å, β=93.85(1)/93.30(2)°, V=413.4/409.1 Å3. Layers of corner-shared MO6 octahedra and phosphate tetrahedra are linked by three of the four crystallographically different hydrogen bonds. The fourth hydrogen bond (located within the layer) is worth mentioning because of the short Oh?O bond distance of 2.57-2.61 Å at room temperature (2.56-2.57 Å at 120 K); only for M=Mg it is increased to 2.65 Å. Any marked temperature-dependent variation of the unit-cell dimension is observed only vertical to the layers. The analysis of the infrared (IR) spectroscopy data evidences that the internal PO4 vibrations are insensitive to the size and the electronic configuration of the M2+ ions. The slight strengthening of the intra-molecular P-O bonds in the Mg salt is caused by the more ionic character of the Mg-O bonds. All IR spectra exhibit the characteristic “ABC trio” for acidic salts: 2900-3180 cm−1 (A band), 2000-2450 cm−1 (B band) and 1550-1750 cm−1 (C band). Both the frequency and the intensity of the A band provide an evidence that the PO2(OH)2 groups in M[PO2(OH)2]2·2H2O compounds form weaker hydrogen bonds as compared with other acidic salts with comparable O?O bond distances of about 2.60 Å. The observed shift of the O-H stretching vibrations of the water molecule in the order M=Mg>Mn≈Fe≈Co>Ni>Zn≈Cd has been discussed with respect to the influence of both the character and the strength of M↔H2O interactions.  相似文献   

19.
Two new rare-earth metal containing Zintl phases, Eu11InSb9 and Yb11InSb9 have been synthesized by reactions of the corresponding elements in molten In metal to serve as a self-flux. Their crystal structures have been determined by single crystal X-ray diffraction—both compounds are isostructural and crystallize in the orthorhombic space group Iba2 (No. 45), Z=4 with unit cell parameters a=12.224(2) Å, b=12.874(2) Å, c=17.315(3) Å for Eu11InSb9, and a=11.7886(11) Å, b=12.4151(12) Å, c=16.6743(15) Å for Yb11InSb9, respectively (Ca11InSb9-type, Pearson's code oI84). Both structures can be rationalized using the classic Zintl rules, and are best described in terms of discrete In-centered tetrahedra of Sb, [InSb4]9−, isolated Sb dimers, [Sb2]4−, and isolated Sb anions, Sb3−. These anionic species are separated by Eu2+ and Yb2+ cations, which occupy the empty space between them and counterbalance the formal charges. Temperature-dependent magnetic susceptibility and resistivity measurements corroborate such analysis and indicate divalent Eu and Yb, as well as poorly metallic behavior for both Eu11InSb9 and Yb11InSb9. The close relationships between these structures and those of the monoclinic α-Ca21Mn4Sb18 and Ca21Mn4Bi18 are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号