首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of novel N,N′,N″-tris(3-dimethylaminopropyl)-guanidine 1 is described and X-ray structure of its hexafluorophosphate salt measured (1H·PF6). The hydrogen bonding in protonated 1 and in 1H·PF6 is also discussed.  相似文献   

2.
A series of salen-type zirconium complexes of the general formula LZrCl2 (L = N,N′-ethylenebis(salicylideneiminate), 3a; N,N′-ethylenebis(3,5-di-tert-butylsalicylideneiminate), 3b; N,N′-ethylenebis(5-methoxysalicylideneiminate), 3c; N,N′-ethylenebis(5-chlorosalicylideneiminate), 3d; N,N′-ethylenebis(5-nitrosalicylideneiminate), 3e; N,N′-o-phenylenebis(salicylideneiminate), 4a; N,N′-o-phenylenebis(3,5-di-tert-butylsalicylideneiminate), 4b; N,N′-o-phenylenebis(5-methoxysalicylideneiminate), 4c; N,N′-o-phenylenebis(5-chloro-salicylideneiminate), 4d) were prepared. The crystal structures of 6- and 7-coordinate zirconium complexes 4b and [4b · OCMe2] were determined by X-ray crystallography, which reveals that a salen-type zirconium complex possesses a labile coordination site on the Zr center with a relatively stable framework and that the coordination and the dissociation of O-donor molecules occur readily at this site. The catalytic properties of 3(a-e) and 4(a-d) were studied for ethylene oligomerization in combination with Et2AlCl as co-catalyst. Complex 3c featuring a methoxy-substituted salen ligand displayed higher activity than its analogous precursors having chloro and nitro groups as substituents. The catalytic reactions by 3(a-e) and 4(a-d) gave C4-C10 olefins and low-carbon linear α-olefins in good selectivity.  相似文献   

3.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

4.
Three unique propeller-shaped helicenyl amines compounds: N,N-diphenyl-N-naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl-amine (1), N-phenyl-N,N-di(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (2), and N,N,N-tri(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (3) were efficiently synthesized by Wittig reaction and oxidative photocyclization. The crystal structures of 1, 2 and molecular configuration optimization (DFT-B3LYP/6-31+G(d)) of 3 reveal that the steric hindrance from the moiety of trithia[5]helicene effectively forces the nitrogen atom and the three bonded carbon atoms to coplanar and the interplanar angles of the facing terminal thiophene ring and benzene ring becoming larger when the helical arm increased from 1 to 3. Electrochemical properties and UV–vis absorption behaviors of 1, 2, 3 were primarily determined by the moiety of trithia[5]helicene.  相似文献   

5.
Five transition metal compounds containing arenesulfonates and 4,4′-bipy ligands, namely [Zn2(N,N′-4,4′-bipy)(N-4,4′-bipy)2(H2O)8](bpds)2 · 5H2O (1), [Ag2(N,N′-4,4′-bipy)2(bpds)] (2), [Cd(N,N′-4,4′-bipy)(H2O)4]2(4-abs)4 · 5H2O (3), [Cu(N,N′-4,4′-bipy) (O-bs)2(H2O)2] · 4H2O (4), and [Zn(N,N′-4,4′-bipy)2(H2O)2](4,4′-bipy)(bs)2 · 4H2O (5) (4,4′-bipy = 4,4′-bipyridine, bpds = 4,4′-biphenyldisulfonate, 4-abs = 4-aminobenzenesulfonate, bs = benzenesulfonate), have been synthesized and characterized by X-ray single crystal diffraction, elemental analyses and TG analyses, in order to investigate the coordination chemistry of arenesulfonates and 4,4-bipy, as well as to construct novel coordination frameworks via mixed-ligand strategy. Compounds 2, 4 and 5 could be obtained via hydrothermal or aqueous reactions. Compound 1 forms a binuclear octahedral metal complex. Compounds 24 form polymeric chains. Compound 5 consists of 2D square grids with one intercalated 4,4′-bipy molecule. Weak Ag–Ag interactions are observed in compound 2. These complexes show great structural varieties and there are three different coordination modes observed for both the 4,4′-bipy and the sulfonate ligands.  相似文献   

6.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

7.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

8.
9.
Five novel coordination polymers, [Co(bpb)2Cl2] (1), [Co(bpb)2(SCN)2] (2), [Cd(H4bpb)0.5(dmf)(NO3)2] (3), [Cd2(H4bpb)Br4] (4), and [Hg2(H4bpb)I4] (5) [bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethyleneimine, H4bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethylamine], were synthesized and their structures were determined by X-ray crystallography. In the solid state, complex 1 is a 1D hinged chain, while 2 has 2D network structure with the ligand bpb serving as a bridging ligand using its two pyridyl N atoms. The imine N atoms keep free of coordination and bpb acts as a bidentate ligand in both 1 and 2. Complexes 3, 4, and 5 with reduced bpb ligand, i.e. H4bpb, show similar 2D network structure, in which ligand H4bpb serves as a tetradentate ligand. Thermogravimetric analyses for complexes 1-5 were carried out and found that they have high thermal stability. The magnetic susceptibilities of compounds 1, 2 were measured over a temperature range of 75-300 K.  相似文献   

10.
Three novel polymers, {[Cd(m-bdc)(L)]·H2O}n (1), [Co(m-bdc)(L)0.5(H2O)]n (2) and [Zn5(L)2(p-bdc)5(H2O)]n (3) based on 1,1′-bis(pyridin-3-ylmethyl)-2,2′-biimidazole (L) ligand and benzenedicarboxylate isomers, have been prepared and structurally characterized. Compound 1 exhibits a 2D architecture with (42·6)(42·67·8) topology, which is synthesized by L and 1,3-benzenedicarboxylate (m-bdc) ligands. Compound 2 is constructed from 1D chains that are linked by L ligands extending a 2D (4,4) grid. Compound 3 is a 3D framework with (43)(46·618·84) topology, which is composed of trinuclear clusters and five-coordinated metal centers joined through 1,4-benzenedicarboxylate (p-bdc) and L ligands. Moreover, the fluorescent properties of L ligand, compounds 1 and 3 are also determined.  相似文献   

11.
1,8-Naphthyridine (napy) and terpyridine-analogous (N,N,C) tridentate ligands coordinated ruthenium (II) complexes, [RuL(napy-κ2N,N′) (dmso)](PF6)2 (1: L=L1=N″-methyl-4′-methylthio-2,2′:6′,4″-terpyridinium, 2: L = L2 = N″-methyl-4′-methylthio-2,2′:6′,3″-terpyridinium) were prepared and their chemical and electrochemical properties were characterized. The structure of complex 1 was determined by X-ray crystallographic study, showing that it has a distorted octahedral coordination style. The cyclic voltammogram of 1 in DMF exhibited two reversible ligand-localized redox couples. On the other hand, the CV of 2 shows two irreversible cathodic peaks, due to the Ru-C bond of 2 containing the carbenic character. The IR spectra of 1 in CO2-saturated CH3CN showed the formation of Ru-(η1-CO2) and Ru-CO complexes under the controlled potential electrolysis of the solution at −1.44 V (vs. Fc/Fc+). The electrochemical reduction of CO2 catalyzed by 1 at −1.54 V (vs. Fc/Fc+) in DMF-0.1 M Me4NBF4 produced CO with a small amount of HCO2H.  相似文献   

12.
The synthetic investigation of the CuII/maleamate(−1) ion (HL)/N,N′,N′′-chelate general reaction system has allowed access to compounds [Cu2(HL)2(bppy)2](ClO4)2·H2O (1·H2O), [Cu(HL)(bppy)(ClO4)] (2) and [Cu(HL)(terpy)(H2O)](ClO4) (4) (bppy = 2,6-bis(pyrazol-1-yl)pyridine, terpy = 2,2′;6′,2′′-terpyridine). In the absence of externally added hydroxides, compound [Cu2(L′)2(bppy)2](ClO4)2 (3) was obtained from MeOH solutions; L′ is the monomethyl maleate(−1) ligand which is formed in situ via the CuII-assisted HL → L′ transformation. In the case of tptz-containing (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine) reaction systems, the CuII-assisted hydrolysis of tptz to pyridine-2-carboxamide (L1) afforded complex [Cu(L1)2(NO3)2] (5). The crystal structures of 15 are stabilized by intermolecular hydrogen bonding and π–π stacking interactions. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

13.
N,N,N′,N′-Tetramethylmethanediamine (1a), N,N,N′,N′-tetramethylethanediamine (1b), N,N,N′,N′-tetramethyl-1,3-propanediamine (1c), and N,N,N′,N′-tetramethyl-1,6-hexanediamine (1d) were reacted at 25 °C with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (2a), 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione (2b), 2-thenoyltrifluoroacetone (2c), and 4,4,4-trifluoro-1-(2-furyl)-1,3-butanedione (2d) to form the ionic adducts 3-18. 1,4,7,10-Tetraazacyclododecane (1e) reacted at 25 °C with β-diketones (2a-d) and 1,1,1-trifluoro-2,4-pentanedione (2e) to give ionic solids 19-23 in good yields. Some of the products are liquid at 25 °C and are thermally stable over long liquid ranges as determined by thermal gravimetric analyses. Single-crystal X-ray structure determinations show that compounds 9 and 21 crystallize in the monoclinic space groups P2(1)/c and P2(1)/n, respectively. All the new compounds were characterized by 1H, 19F and 13C NMR, electrospray MS and/or elemental analyses.  相似文献   

14.
The preparation of four novel bridged piperazine building blocks is described: 3,7,9-triazabicyclo[3.3.1]nonane 1, 3-oxa-7,9-diazabicyclo[3.3.1]nonane 2, 3,6,8-triazabicyclo[3.2.2]nonane 3 and 3-oxa-6,8-diazabicyclo[3.2.2]nonane 4. The scaffold of 1 was synthesized from N,N′-dibromobenzenesulfonamide and ethyl acrylate. Compound 2 may be prepared from identical starting materials or alternatively from α,α′-diglycerol. Compounds 3 and 4 were identified as side products from possible aziridinium intermediates.  相似文献   

15.
The introduction of various secondary N-donor ligands into an in situ ditetrazolate-ligand synthesis system of terephthalonitrile, NaN3 and ZnCl2 led to the formation of three new entangled frameworks Zn(pdtz)(4,4′-bipy)·3H2O (1), [Zn(pdtz)(bpp)]2·3H2O (2) and Zn(pdtz)0.5(N3)(2,2′-bipy) (3) (4,4′-bipy=4,4′-bipyridine; bpp=1,3-bis(4-pyridyl)propane; 2,2′-bipy=2,2′-bipyridine; H2pdtz=5,5′-1,4-phenylene-ditetrazole). The formation of pdtz2− ligand involves the Sharpless [2+3] cycloaddition reaction between terephthalonitrile and NaN3 in the presence of Zn2+ ion as a Lewis-acid catalyst under hydrothermal conditions. Compound 1 exhibits a fivefold interpenetrating 3D framework based on the diamondoid topology. Compound 2 displays a twofold parallel interpenetrating framework based on the wavelike individual network. Compound 3 possesses a 2D puckered network. These new Zn-ditetrazolate frameworks are highly dependent on the modulation of different secondary N-donor ligands. Their luminescent properties were investigated.  相似文献   

16.
Four new coordination polymers were obtained by employing polycarboxylato spacers and cationic copper(II) complexes as nodes: 2[Cu3(trim)2(NH3)6(H2O)3] (1); 1[Cu(tmen)(dhtp)] (2), 1[Cu(tmen)(hitp)(H2O)] (3), 1[Cu(tmen)(nitp)] (4). (H3trim = trimesic acid, H2dhtp = 2,5-dihydroxy-terephthalic acid; H2hitp = 5-hydroxy-isophthalic acid, H2nitp = 5-nitro-isophthalic acid; tmen = N,N,N′,N′-tetramethyl-ethylenediamine). The crystal structures of the four compounds have been solved. Compound 1 consists of 2D coordination polymers with heart-shaped meshes, while compounds 24 contain infinite zigzag chains. The role of the hydrogen bond interactions in sustaining the supramolecular solid-state architectures in compounds 1 and 3 is discussed. The cryomagnetic investigation of compounds 1, 2, and 4 reveals antiferromagnetic interactions between the copper ions.  相似文献   

17.
Synthesis and characterization of the dinuclear ruthenium coordination complexes with heteroleptic ligand sets, [Cl(terpy)Ru(tpphz)Ru(terpy)Cl](PF6)2(7) and [(phen)2Ru(tpphz)Ru(terpy)Cl](PF6)3(8), are reported. Both structures contain a tetrapyrido[3,2-α:2′,3′-c:3′′,2′′-h:2′′,3′′-j]phenazine (tpphz) (6) ligand bridging the two metal centers. Complex 7 was obtained via ligand exchange between, RuCl2(terpy)DMSO (5) and a tpphz bridge. Complex 8 was obtained via ligand exchange between, [Ru(phen)2tpphz](PF6)2(4) and RuCl2(terpy)DMSO (5). Metal-to-ligand-charge-transfer (MLCT) absorptions are sensitive to ligand set composition and are significantly red-shifted due to more electron donating ligands. Complexes 79 have been characterized by analytical, spectroscopic (IR, NMR, and UV–Vis), and mass spectrometric techniques. The electronic spectral properties of 7, 8, and [(phen)2Ru(tpphz)Ru(phen)2](PF6)4(9), a previously reported +4 analog, are presented together. The different terminal ligands of 7, 8, and 9 shift the energy of the MLCT and the π–π* transition of the bridging ligand. These shifts in the spectra are discussed in the context of density functional theory (DFT). A model is proposed suggesting that low-lying orbitals of the bridging ligand accept electron density from the metal center which can facilitate electron transfer to nanoparticles like single walled carbon nanotubes and colloidal gold.  相似文献   

18.
A simple four-step synthesis of 4-(2-aminoethyl)-5-hydroxy-1H-pyrazoles 8 (or their 1H-pyrazol-3(2H)-one tautomers 8′) as the pyrazole analogues of histamine was developed. First, enamino lactam 3 was prepared as the key intermediate in two steps from 2-pyrrolidinone (1). Next, acid-catalysed ‘ring switching’ transformations of 3 with monosubstituted hydrazines 4 gave N-[(1-substituted 5-hydroxy-1H-pyrazol-4-yl)ethyl]benzamides 7a-k and N-[2-(2-heteroaryl-3-oxo-2,3-dihydro-1H-pyrazol-4-yl)ethyl]benzamides 7′l-o. Benzamides 7a-k and 7′l-o were finally hydrolysed by heating in 6 M hydrochloric acid to furnish 1-substituted 4-(2-aminoethyl)-5-hydroxy-1H-pyrazoles 8a-k and 4-(2-aminoethyl)-2-heteroaryl-1H-pyrazol-3(2H)-ones 8′l-o in good overall yields.  相似文献   

19.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

20.
We have measured, by means of NMR titrations, the binding constants for the complexes between hosts N,N′-bis(6-methylpyridin-2-yl)-1,3-benzenedicarboxamide (7) and 4-chloro-N,N′-bis(6-methylpyridin-2-yl)-2,6-pyridinedicarboxamide (8, hydrated) with biotin methyl ester (1), N,N′-dimethylurea (2), 2-imidazolidone (3), N,N′-trimethylenurea (4), barbital (5) and tolbutamide (6) as guests. Molecular Mechanics calculations (Monte Carlo Conformational Search, AMBER and OPLS force fields, MacroModel v.8.1) on the complexes formed between the foregoing guests and hosts 7 and 8, comparatively with 4-oxo-N,N′-bis(6-methylpyridin-2-yl)-1,4-dihydro-2,6-pyridinedicarboxamide (9a) have been carried out in order to determine the correlation between experimental and theoretical results and to understand the behaviour of the designed new hosts. Finally we have performed single point DFT [B3LYP/6-31G(d,p)] calculations on the optimised Molecular Mechanics geometries for the complexes between hosts 7-9 and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号