首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Nanosized-Ta2O5 powder photocatalyst was successfully synthesized by using sol-gel method via TaCl5 butanol solution as a precursor. Ta2O5 species can be formed under 500 °C via the decomposition of the precursor. The crystalline phase of Ta2O5 powder photocatalyst can be obtained after being calcined above 600 °C for 4 h. The crystal size and particle size of Ta2O5 powder photocatalyst was about 50 nm. A good photocatalytic performance for the degradation of gaseous formaldehyde was obtained for the nanosized-Ta2O5 powder. The Ta2O5 powder formed at 700 °C for 4 h and at 650 °C for 12 h showed the best performance. The calcination temperature and time play an important role in the crystallization and photocatalytical performance of nanosized-Ta2O5 powder.  相似文献   

2.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO_4/Bi_2O_3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-可见漫反射(UV-Vis DRS)等方法对样品进行表征。可见光下,BiVO_4/Bi_2O_3复合物的光催化降解罗丹明B性能及光电流响应均优于纯BiVO_4。这是由于BiVO_4/Bi_2O_3复合材料形成了异质结构,有效抑制了光生电子与空穴的复合效率。  相似文献   

3.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO4/Bi2O3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-射(UV-Vis DRS)等方法征。可见光下,BiVO4/Bi2O3复合物的光催化降解丹明B性能及光电优于纯BiVO4。BiVO4/Bi2O3复合材料形成了异质结构,有效抑制了光电子与空穴的复合效率。  相似文献   

4.
经由溶剂热反应、光辅助还原过程制备Bi/Bi VO_4Bi_4V_2O_(11)纳米复合光催化材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、N_2吸附-脱附等温线和光致发光(PL)等手段对该复合物进行表征。实验结果表明当金属Bi与BiVO_4Bi_4V_2O_(11)的质量比值为0.8,可见光照射30 min时,Bi/BiVO_4Bi_4V_2O_(11)复合催化剂对罗丹明B(RhB)的降解率可达95.6%。此外,Bi/BiVO_4Bi_4V_2O_(11)对四环素(TC)的降解也表现出增强的光催化性能。Bi/BiVO_4Bi_4V_2O_(11)复合材料提升的光催化性能可能归因于金属Bi的表面等离子体共振(SPR)效应、拓宽的可见光吸收范围和增大的比表面积。此外,提出了复合光催化剂可能的光催化机理。  相似文献   

5.
纳米钒酸铋的微波快速合成及光催化性能研究   总被引:2,自引:0,他引:2  
采用微波辅助加热法以NaVO3溶液和Bi(NO3)3·5H2O的硝酸溶液为反应物,在10~40 min内合成了纳米钒酸铋粉末。利用XRD、FTIR、TEM、UV-Vis等手段研究了反应时间对产物结构及形貌的影响。经测定反应10 min时,得到纯的四方相BiVO4,随着反应时间的延长,逐渐出现单斜相的衍射峰,当反应40 min时,获得纯的单斜相BiVO4。同时XRD和IR结果证明了相转变的过程。TEM分析表明不同的反应时间条件下样品呈现不同的形貌。不同反应时间下获得样品的光催化性能的结果表明,微波反应时间对BiVO4结构的转变及光催化性能的改变起到了重要的作用。  相似文献   

6.
An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe2O3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe2O3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.  相似文献   

7.
BaMoO4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 °C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 °C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba2+ and electronic transitions within MoO2−4, respectively. The optical band gaps of BaMoO4 were 3.38 and 2.19 eV, for crystalline (600 °C/2 h) and amorphous (200 °C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications.  相似文献   

8.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

9.
Manganese oxide (hausmannite) polyhedral nanocrystals were prepared by a microwave-assisted solution-based method using Mn(CH3COO)2 and (CH2)6N4 at 80 °C. The as-prepared Mn3O4 nanocrystals were characterized by means of X-ray diffraction, field-emission transmission electron microscopy, field-emission scanning electron microscopy and Raman spectrum. Mn3O4 polyhedral nanocrystals prepared by microwave heating at 80 °C for 60 min were of cubic and rhombohedral shapes with the edge lengths in the range of 15-40 nm. Mn3O4 nanocrystals grew following the Ostwald ripening mechanism with increasing reaction time. High-resolution transmission electron microscopy and selected area electron diffraction confirm that the as-obtained polyhedral nanocrystals were single-crystalline. The magnetic behavior of Mn3O4 nanocrystals was studied. Mn3O4 nanocrystals show an obvious ferromagnetic behavior at low temperatures. The magnetic behavior of Mn3O4 nanocrystals was sensitive to crystal size. Ferromagnetic onset temperatures (Tc) of samples 1 and 3 are 40.6 and 41.1 K, respectively, lower than that observed for bulk Mn3O4 (42 K).  相似文献   

10.
Synthesis of submicrometer crystalline particles of cobalt carbonate was achieved hydrothermally using different cobalt salts and urea with a molar ratio from 1:3 to 1:20 (cobalt salt:urea) in aqueous solutions at 160 °C for 24-36 h, in the presence of cetyltrimethylammonium bromide (CTAB) as a surfactant. Nanoparticles of Co3O4, with an average size from 30 to 39 nm, were obtained by thermal decomposition of CoCO3 samples at 500 °C for 3 h in an electrical furnace. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis spectra and thermal analysis. Studying the optical properties of the as-prepared cobalt oxide nanoparticles showed the presence of two band gaps, the values of which confirmed the semiconducting properties of the prepared Co3O4.  相似文献   

11.
CTAB-Mn3O4 nanocomposites: Synthesis,NMR and low temperature EPR studies   总被引:1,自引:0,他引:1  
We are reporting on the synthesis of Mn3O4 nanoparticles and CTAB-Mn3O4 nanocomposites via a sonochemical route using MnCl2, ethanol, NaOH and CTAB. The crystalline phase was identified as Mn3O4. The crystallite size of the CTAB-Mn3O4 nanocomposite was identified as 13 ± 5 nm from X-ray line profile fitting and the particle size from TEM was 107.5 ± 1.4 nm. The interaction between CTAB and the Mn3O4 nanoparticles was investigated by FTIR and 1H NMR spectroscopies. Two different magnetic phase transitions were observed for both samples below the Curie temperature (43 °C) by using a low temperature Electron Paramagnetic Resonance (EPR) technique. Also we determined the effect of the capping with CTAB on the reduction in absorbed power.  相似文献   

12.
A new sol-gel route was applied to obtain Y0.9Er0.1Al3(BO3)4 crystalline powders and amorphous thin films by using Al(acac)3, B(OPri)3, Y(NO3)3·6H2O, and Er(NO3)3·5H2O as starting materials dissolved in propionic acid and ethyl alcohol mixtures. Our study shows that propionic acid acts as good chelant agent for yttrium and erbium ions while ethyl alcohol allows to dissolve Al(acac)3. This process makes the resulting sols very stable to obtain homogeneous gels and transparent amorphous thin films. In addition, the propionic acid prevents the sol precipitation, making easy porous- and crack-free thin film depositions. Chemical reactions involved in the complexation were discussed. As-prepared powders and films are amorphous and present a good thermal stability due to their high glass transition (746 °C) and crystallization temperatures (830 °C). This new sol-gel route showed to be adequate to obtain dense and crack-free thin films free of organic and hydroxyl groups that can be considered as promising materials to be used in integrated optical systems.  相似文献   

13.
The photocatalytic activity of 1.0 wt% PdO supported on Al2O3-Nd2O3 binary oxides prepared by the sol-gel method was studied in the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). The photocatalysts were characterized by N2 physisorption, XRD and UV-vis spectroscopy. PdO supported on γ-Al2O3 photo-degrades the 2,4-D, however the addition of Nd2O3 to γ-Al2O3 notably improves the photocatalytic activity. As the concentration of Nd2O3 in the binary oxide increases from 2 to 10 wt%, the photodegradation of 2,4-D is highly enhanced. The catalytic test for PdO supported on pure Nd2O3 showed scarce photocatalytic activity. Total organic carbon (TOC) analysis showed that the 2,4-D has been completely destroyed on the PdO/Al2O3-Nd2O3 photocatalysts after 6 h under irradiation.  相似文献   

14.
Mn/Fe mixed oxide solids doped with Al2O3 (0.32-1.27 wt.%) were prepared by impregnation of manganese nitrate with finely powdered ferric oxide, then treated with different amounts of aluminum nitrate. The obtained samples were calcined in air at 700-1000 °C for 6 h. The specific surface area (SBET) and the catalytic activity of pure and doped precalcined at 700-1000 °C have been measured by using N2 adsorption isotherms and CO oxidation by O2. The structure and the phase changes were characterized by DTA and XRD techniques. The obtained results revealed that Mn2O3 interacted readily with Fe2O3 to produce well-crystallized manganese ferrite (MnFe2O4) at temperatures of 800 °C and above. The degree of propagation of this reaction increased by Al2O3-doping and also by increasing the heating temperature. The treatment with 1.27 wt.% Al2O3 followed by heating at 1000 °C resulted in complete conversion of Mn/Fe oxides into the corresponding ferrite phase. The catalytic activity and SBET of pure and doped solids were found to decrease, by increasing both the calcination temperature and the amount of Al2O3 added, due to the enhanced formation of MnFe2O4 phase which is less reactive than the free oxides (Mn2O3 and Fe2O3). The activation energy of formation (ΔE) of MnFe2O4 was determined for pure and doped solids. The promotion effect of aluminum in formation of MnFe2O4 was attributed to an effective increase in the mobility of reacting cations.  相似文献   

15.
Effect of surface fluorination and conductive additives on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4) has been investigated using F2 gas and vapor grown carbon fiber (VGCF). Surface fluorination of Li4/3Ti5/3O4 was made using F2 gas (3 × 104 Pa) at 25-150 °C for 2 min. Charge capacities of Li4/3Ti5/3O4 samples fluorinated at 70 °C and 100 °C were larger than those for original sample at high current densities of 300 and 600 mA/g. Optimum fluorination temperatures of Li4/3Ti5/3O4 were 70 °C and 100 °C. Fibrous VGCF with a large surface area (17.7 m2/g) increased the utilization of available capacity of Li4/3Ti5/3O4 probably because it provided the better electrical contact than acetylene black (AB) between Li4/3Ti5/3O4 particles and nickel current collector.  相似文献   

16.
Through controlling the amount of NaOH added, BiOBr and Bi2O3 with different shapes were hydrothermally synthesized in the reaction system of Bi(NO3)3-hexadecyl trimethyl ammonium bromide (CTAB)-NaOH. As 8 mmol of NaOH was added, BiOBr microflowers constructed of nanoflakes were synthesized. The thickness of these single-crystal nanoflakes was about 20 nm. In the similar condition, when the amount of NaOH added was 28 mmol, Bi2O3 shuttles with concave surfaces were obtained. The length of these shuttles was 100 μm and the diameter at the middle of these shuttles was 50 μm. The photocatalytic activity of as-prepared BiOBr microflowers was evaluated by the degradation of methyl orange (MO) under visible-light irradiation (λ>420 nm), which was up to 96% within 90 min.  相似文献   

17.
采用一步水热法制备Bi2MoO6/BiVO4复合光催化剂. 利用X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)等手段对其晶体结构和微观结构进行了表征. 结果表明, Bi2MoO6纳米粒子沉积在BiVO4纳米片表面从而形成异质结结构. 紫外-可见漫反射光谱(UV-Vis DRS)表明所制备的Bi2MoO6/BiVO4异质结较纯相Bi2MoO6和BiVO4对可见光吸收更强. 由于形成异质结结构及其光吸收性能使Bi2MoO6/BiVO4 光催化活性有较大提高. 可见光下(λ>420 nm)光催化降解罗丹明B (RhB)实验结果表明,Bi2MoO6/BiVO4光催化活性较纯相Bi2MoO6和BiVO4高. Bi2MoO6/BiVO4样品光催化性能提高的原因是Bi2MoO6和BiVO4形成异质结, 从而有效抑制光生电子-空穴对的复合, 增大了可见光吸收范围及比表面积.  相似文献   

18.
Disposal of palm oil mill effluent (POME), which is highly polluting from the palm oil industry, needs to be handled properly to minimize the harmful impact on the surrounding environment. Photocatalytic technology is one of the advanced technologies that can be developed due to its low operating costs, as well as being sustainable, renewable, and environmentally friendly. This paper reports on the photocatalytic degradation of palm oil mill effluent (POME) using a BiVO4 photocatalyst under UV-visible light irradiation. BiVO4 photocatalysts were synthesized via sol-gel method and their physical and chemical properties were characterized using several characterization tools including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), surface area analysis using the BET method, Raman spectroscopy, electron paramagnetic resonance (EPR), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of calcination temperature on the properties and photocatalytic performance for POME degradation using BiVO4 photocatalyst was also studied. XRD characterization data show a phase transformation of BiVO4 from tetragonal to monoclinic phase at a temperature of 450 °C (BV-450). The defect site comprising of vanadium vacancy (Vv) was generated through calcination under air and maxima at the BV-450 sample and proposed as the origin of the highest reaction rate constant (k) of photocatalytic POME removal among various calcination temperature treatments with a k value of 1.04 × 10−3 min−1. These findings provide design guidelines to develop efficient BiVO4-based photocatalyst through defect engineering for potential scalable photocatalytic organic pollutant degradation.  相似文献   

19.
Porous magnetic composites were prepared by the synthesis of molecular sieve MCM-41 in the presence of Fe3O4 nanoparticles with average diameter of 15 nm. Nanoparticles were captured by porous silica matrix MCM-41, which resulted in their incorporation, as it was confirmed by TEM, SEM and X-ray diffraction. The materials possessed high surface area (392-666 m2 g−1), high pore volume (0.39-0.73 cm3 g−1) along with high magnetic response (MS up to 28.4 emu g−1 at 300 K). Calcination of samples resulted in partial oxidation of Fe3O4 to α-Fe2O3. The influence of nanoparticles content on sorption and magnetic properties of the composites was shown. No hysteresis was found for the samples at 300 K; at 5 K, HC was in the range 370-385 G for non-calcinated samples and 350-356 G for calcinated ones.  相似文献   

20.
The effect of B2O3 addition on the crystallization of amorphous TiO2-ZrO2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO2-ZrO2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO2-ZrO2 into a crystalline ZrTiO4 compound, while a larger amount of boria (?8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO4 units delay, while a build-up of trigonal BO3 promote, the crystallization of amorphous TiO2-ZrO2 to form ZrTiO4 crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号